120. Glyconothio- O-lactones

Part II
 Cycloaddition to Dienes, Diazomethane, and Carbenoids

by Marianne Hürzeler ${ }^{\mathbf{a}}$), Bruno Bernet ${ }^{\mathbf{b}}$), Thomas Mäder ${ }^{\text {b }}$), and Andrea Vasella $\left.{ }^{\mathrm{b}}\right)^{* 1}$)
${ }^{\text {a }}$) PRPV Bau 15, F. Hoffmann-La Roche AG, CH-4002 Basel
${ }^{\text {b }}$) Organisch-chemisches Institut, Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich

(4.III.93)

Abstract

The addition of dienes, diazomethane, and carbenoids to the manno- and ribo-configurated thio- γO lactones 1 and 2 was investigated. Thus, 1 (Scheme 1) reacted with 2,3-dimethylbutadiene ($\rightarrow \mathbf{4}, 73 \%$), cyclopentadiene ($\rightarrow \mathbf{5 a} / \mathrm{b} 1: 1,70 \%$), cyclohexa-1,3-diene ($\rightarrow 9 \mathrm{a} / \mathrm{b} 2: 3,92 \%$), and the electron-rich butadiene 6 $(\rightarrow \mathbf{7 a} / \mathbf{b} 3: 1,82 \%$). Wheras $5 \mathrm{a} / \mathbf{b}$ was separated by flash chromatography, $\mathbf{7 a / b}$ was desilylated leading to the thiapyranone 8. Selective hydrolysis of one isopropylidene group of $9 \mathrm{a} / \mathbf{b}$ and flash chromatography gave $\mathbf{1 0 a}$ and 10b. The stuctures of the adducts were elucidated by X-ray analysis (4), by NOE experiments (4,5a, 5b, 7a/ $\mathrm{b}, 10 \mathrm{a}$, and $\mathbf{1 0 b}$), and on the basis of a homoallylic coupling ($\mathbf{7 a} / \mathrm{b}$). The additions occurred selectively from the 'exo'-side of 1 . Only a weak preference for the 'endo'-adducts was observed. Hydrogenation of $9 \mathrm{a} / \mathrm{b}$ with RaneyNi (EtOH , room temperature) gave the thiabicyclo[2.2.2]octane 11. Under harsher conditions (dioxane, 110°), $9 \mathrm{a} / \mathrm{b}$ was reduced to the cyclohexyl β-d-C-glycoside 12 which was deprotected to 13 . X-Ray analysis of 13 proved that the desulfuration occurred with inversion of the anomeric configuration. The regioselective addition of the dihydropyridine 14 to 1 (Scheme 2) and the methanolysis of the crude adduct 15 gave the lactams $16 a$ (32%) and $\mathbf{1 6 b}$ (38%). Desilylation of 15 with $\mathrm{Bu}_{4} \mathrm{NF} \cdot 3 \mathrm{H}_{2} \mathrm{O}$, however, gave the unsaturated piperidinedione 17 (92%) which was deprotected to the tetrol $18(65 \%)$. Similarly, 2 was transformed via $19(62 \%)$ into the triol 20 (74%). The cycloaddition of 1 with $\mathrm{CH}_{2} \mathrm{~N}_{2}$ (Scheme 3) gave a $35: 65$ mixture of the 2,5-dihydro-1,3,4-triazole 21 and the crystalline 4,5-dihydro-1,2,3-triazole 22 . Treatment of 21 and 22 with base gave the hydroxytriazoles 23 and 24, respectively. The structure of 24 was established by X-ray analysis. The triazole mixture $21 / 22$ was separated by prep. HPLC at 5°. At room temperature, 21 already decomposed (half-life 21.6 h) leading in CDCl_{3} solution to a complex mixture (containing $c a .20-25 \%$ of the spirothiirane 27 and $c a .7-10 \%$ of its anomer) and in MeOH solution exclusively to the O, O, S-ortholactone 26. Crystals of 22 proved be stable at 105°. Upon heating in petroleum ether at $100^{\circ}, 22$ was transformed into a $c a .1: 1$ mixture of 27 and the enol ether 28 . The reaction of 1 with ethyl diazoacetate (Scheme 4) in the presence of $\mathrm{Rh}_{2}(\mathrm{OAc})_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ gave the unsaturated esters $29(33 \%)$ and $30(26 \%)$, whereas the analogous reaction with diethyl diazomalonate afforded the spirothiirane 31 (68%) and the enol ether $32(29 \%)$. Complete transformation of 31 into 32 was achieved by the treatment with $\mathrm{P}\left(\mathrm{NEt}_{2}\right)_{3}$. Similarly, 33 (69\%) was prepared from 2.

Introduction. - We have recently described the synthesis of glyconothio- O-lactones by photolysis of phenacyl thioglycosides or by thermolysis of S-glycosyl thiosulfinates, and the addition of nucleophiles to the manno-thio-O-lactone 1 [1].

[^0]Thiocarbonyl compounds undergo cycloadditions with a variety of unsaturated compounds. The hetero-Diels-Alder reactions of thioketones and thioaldehydes were investigated in detail [2] [3a] [4-6]. A range of thioaldehydes and thioketones were prepared in situ and trapped at low temperature with simple dienes [3a] [4] [7] ${ }^{2}$). Thio- O esters and dithioesters are less reactive and require higher reaction temperatures. $O, O-$ Dimethyl dithiooxalate reacted with 2,3-dimethylbuta-1,3-diene (3) at room temperature to slowly generate the mono-Diels-Alder-addition product in quantitative yield [8]. O Methyl thioacetate, lacking an activating, electron-withdrawing group, gave the corresponding addition product (73%) only under harsh conditions (3 days at 160°) [9].

Thiocarbonyl compounds are also highly reactive towards 1,3-dipolar compounds, such as nitrile oxides, nitrile ylides, and diazo compounds [4] [5] [10-15]. The main primary products of the reaction between thioketones or thioaldehydes and diazo compounds are 2,5-dihydro-1,3,4- and 4,5-dihydro-1,2,3-thiadiazoles. In some cases, the ratio of the regioisomers depends strongly on the solvent [16]. The dihydro-thiadiazoles are unstable at higher temperatures where they lose N_{2} and S to yield thiiranes or alkenes. The less stable isomers, the 2,5-dihydro-1,3,4-thiadiazoles, may lose N_{2} readily under conditions of their formation, and yield 1,3-dithiolanes by a 1,3-dipolar cycloaddition between the intermediate thiocarbonyl ylide and the thiocarbonyl compound [2] [13] [17] [18]. Dithioesters and trithiocarbonate react with diazoalkanes to form 2,5-dihydro-1,3,4thiadiazoles and their derivatives [17] [19-21], while the analogous reaction of thio- O esters leads to 5-alkoxy-4,5-dihydro-1,2,3-thiadiazoles [21] and, after elimination of ROH, to 1,2,3-thiadiazoles [21] [22]. A diadduct possessing both a 4,5-dihydro-1,2,3thiadiazole and a 2,5 -dihydro-1,3,4-thiadiazole moiety was obtained from the reaction of $\mathrm{CH}_{2} \mathrm{~N}_{2}$ to O, O-dimethyl dithiooxalate [19]. Other cycloadditions of thiocarbonyl compounds include their reaction with alkenes to give thietanes under photolytic conditions [4] [23], and with carbenes or carbenoids, leading to thiiranes and further, with loss of the S-atom, to the corresponding alkenes [4] [24].

In spite of this impressive synthetic potential, only two reports refer to cycloadditions of carbohydrate-derived thiocarbonyl compounds. Both describe the synthesis of 5-deoxy5 -thiopyranosides, namely the synthesis of monosaccharides from methyl cyanodithioformate and buta-1,3-diene [25] and the synthesis of disaccharides from monosaccharide-derived thio- O-formates and buta-1,3-dienes [26], without, in the second case, determining the configuration of the cycloadducts.

To explore the preparative potential of glyconothio- O-lactones, we examined the cycloaddition of the thio-1,4- O-lactones 1 and 2 with dienes, diazomethane, and carbenoids.

1

2

[^1]Results and Discussion. - [1,4]-Cycloadditions. To the best of our knowledge, only a few [1,4]-cycloadditions of thio- O-esters [8] [27], but none of thio- O-lactones were described. We, therefore, investigated the reaction of 1 with reactive dienes, viz. 2,3-dimethylbuta-1,3-diene (3), cyclopentadiene, cyclohexa-1,3-diene, and the electron-rich butadiene 6 [7] [28]. In all cases, the diene was used as solvent.

The reaction of 1 with 3 at 150° yielded 75% of 4 . Cyclopentadiene gave already at 80° a $1: 1$ mixture of diastereoisomers. Flash chromatography yielded pure samples of 5 a (34%) and $\mathbf{5 b}(36 \%)$. Attack of the diene on $\mathbf{1}$ is expected to occur from the 'exo'-side. Thus, the formation of one adduct from 3 and of two adducts from cyclopentadiene is expected.

Scheme 1

7a $R=\mathrm{MeO}, \mathrm{R}^{\prime}=\mathrm{H}$
7b $R=H, R^{\prime}=M e O$

11

1

N

12

13

The structure of 4 was established by X-ray analysis (Fig. 1, Table 1). The β-Dconfiguration of the thioglycoside is in keeping with the attack of the diene from the ' $e x o$ 'side of the trioxabicyclo[3.3.0]octane system. The $\mathrm{C}(1)-\mathrm{S}(1)$ and $\mathrm{C}(2)-\mathrm{O}(5)$ bonds are synperiplanar (dihedral angle of 8.1°; arbitrary numbering, see Fig. 1). An exo-anomeric effect is sterically possible (dihedral angle $\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{S}(1)-\mathrm{C}(16)$ of -63.6°), and its existence is indicated by a lengthening of the $\mathrm{C}(1)-\mathrm{O}(1)$ bond and a shortening of the $\mathrm{C}(1)-\mathrm{S}(1)$ bond. The furanose ring possess $\mathrm{a}^{\circ} T_{4}$ and the thiopyran ring a ${ }^{\mathrm{s}} H_{1}$ conformation.

Fig. 1. X-Ray structure of 4

In the ${ }^{1} \mathrm{H}$-NMR spectrum of $4,2 s$ at 1.77 and 1.71 ppm are assigned to the olefinic Me groups. An $A B$ system $(J=15 \mathrm{~Hz})$ at 3.24 and 2.97 ppm and a s at 2.32 ppm are due to the two allylic CH_{2} groups. The neighborhood of the allylic $\mathrm{CH}_{2}(4)$ with $\mathrm{H}-\mathrm{C}(6)$ and $\mathrm{H}-\mathrm{C}(8)$ is evidenced by NOE experiments (Table 3). The diastereoisomers $5 \mathrm{a} / \mathrm{b}$ exhibit similar chemical shifts and coupling constants in the mannose moiety as 4 (Table 2). NOE Experiments with $5 \mathrm{a} / \mathrm{b}$ prove the neighborhood of the more strongly shielded bridgehead H -atom with $\mathrm{H}-\mathrm{C}(2)$ and $\mathrm{H}-\mathrm{C}(4)\left(\right.$ Table 3). In addition, NOE's between $\mathrm{H}-\mathrm{C}(2)$ and the olefinic $\mathrm{H}-\mathrm{C}\left(2^{\prime}\right)$ of $\mathbf{5 a}$, and, for $\mathbf{5 b}$, between $\mathrm{H}-\mathrm{C}(2)$ and $\mathrm{H}-\mathrm{C}\left(5^{\prime}\right)$ and between $\mathrm{H}-\mathrm{C}(4)$ and $\mathrm{H}-\mathrm{C}\left(2^{\prime}\right)$ allow an unambiguous configurational assignment.

The electron-rich butadiene 6 added to 1 already at 110°, i.e. 40° below 3 , leading in an expected, regioselective addition [7] to a $3: 1$ mixture of the O, S-acetals $7 \mathbf{a} / \mathbf{b}$ in 82% yield. Desilylation of $7 \mathbf{a} / \mathbf{b}$ with $\mathrm{Bu}_{4} \mathrm{NF}$ yielded 49% of the crystalline hydroxy-thiopyranone 8 by twofold β-elimination. The Diels-Alder reaction of 1 with cyclohexa-1,3-diene at 180° gave a $2: 3$ mixture $9 \mathrm{a} / \mathrm{b}$ which could not be separated by flash chromatography. Regioselective hydrolysis of the 5,6-O-isopropylidene group by aq. AcOH gave a mixture of the diols $10 \mathrm{a} / \mathrm{b}$. Upon chromatography, pure samples of $\mathbf{1 0 a}$ and $\mathbf{1 0 b}$ were obtained. Hydrogenation of $9 \mathbf{a} / \mathrm{b}$ with Raney- Ni in EtOH for 4 h at room temperature led in 53% yield to a single compound, the thiabicyclo[2.2.2]octane 11. Harsher conditions (1 h at 110° in dry dioxane) gave the cyclohexyl C-glycoside 12 (77%). The reduction occurred with inversion of the configuration at $\mathrm{C}(1)$. Deprotection of 12 in aq . AcOH at 110° and crystallization from AcOEt led to the tetrol 13 in 54\% yield.
Table 1. Selected Bond Lengths, H,H Distances, and Bond and Dihedral Angles of 4. For numbering, see Fig.1.

Bond Lengths or H, \mathbf{H} Distances [\AA]				Bond or Dihedral Angles [${ }^{\circ}$]			
$\mathrm{C}(1)-\mathrm{C}(2)$	1.536 (10)	$\mathrm{C}(14)-\mathrm{C}(15)$	1.301 (12)	$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	104.9 (5)	$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{O}(2)$	-61.4
$\mathrm{C}(2)-\mathrm{C}(3)$	1.537 (10)	$\mathrm{C}(15)-\mathrm{C}(16)$	1.512 (12)	$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	105.7 (6)	$\mathrm{C}(4)-\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(13)$	94.4
$\mathrm{C}(3)-\mathrm{C}(4)$	1.499 (11)	$\mathrm{C}(16)-\mathrm{S}(1)$	1.776 (8)	$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{O}(1)$	105.7 (5)	$\mathrm{C}(4)-\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{S}(1)$	-143.2
$\mathrm{C}(4)-\mathrm{C}(5)$	1.498 (12)	$\mathrm{C}(14)-\mathrm{C}(17)$	1.506 (12)	$\mathrm{C}(4)-\mathrm{O}(1)-\mathrm{C}(1)$	109.7 (5)	$\mathrm{O}(5)-\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{S}(1)$	8.1
$\mathrm{C}(1)-\mathrm{O}(1)$	1.446 (9)	$\mathrm{C}(15)-\mathrm{C}(18)$	1.508 (11)	$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{S}(1)$	108.8 (5)	$\mathrm{C}(1)-\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)$	14.8
$\mathrm{C}(2)-\mathrm{O}(5)$	1.407 (9)	$H-\mathrm{C}(16), H-\mathrm{C}(2)$	2.29	$\mathrm{C}(1)-\mathrm{S}(1)-\mathrm{C}(16)$	97.7 (4)	$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)$	3.1
$\mathrm{C}(3)-\mathrm{O}(4)$	1.417 (10)	$H-\mathrm{C}(16), H-\mathrm{C}(3)$	4.23	$\mathrm{S}(1)-\mathrm{C}(16)-\mathrm{C}(15)$	116.9 (7)	$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{S}(1)$	15.7
$\mathrm{C}(4)-\mathrm{O}(1)$	1.424 (8)	$H-\mathrm{C}(16), \mathrm{H}-\mathrm{C}(4)$	3.78	$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	13.2	$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{S}(1)-\mathrm{C}(1)$	-41.8
$\mathrm{C}(1)-\mathrm{C}(13)$	1.508 (11)	$H-\mathrm{C}(16), H-\mathrm{C}(2)$	2.50	$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{O}(1)$	-27.6	$\mathrm{H}-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{H}$	18.2
$\mathrm{C}(1)-\mathrm{S}(1)$	1.771 (7)	$H-\mathrm{C}(16), H-\mathrm{C}(3)$	2.54	$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{O}(1)-\mathrm{C}(1)$	33.0	$\mathrm{H}-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{H}$	-34.5
$\mathrm{C}(13)-\mathrm{C}(14)$	1.498 (10)	$H-\mathrm{C}(16), H-\mathrm{C}(4)$	3.64	$\mathrm{O}(1)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{O}(2)$	-179.0	$\mathrm{H}-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{H}$	-177.7

Table. 2. Selected ${ }^{\prime} H-N M R\left(\mathrm{CDCl}_{3}\right)$ Chemical Shifts [ppm] and Coupling Constants [Hz$]$ of the Mannose Part $\left.{ }^{*}\right)$ of the Cycloadducts to 1 and of Their Derivatives

	$\mathrm{H}-\mathrm{C}(2)$	$\mathrm{H}-\mathrm{C}(3)$	$\mathrm{H}-\mathrm{C}(4)$	$\mathrm{H}-\mathrm{C}(5)$	H-C(6)	$\mathrm{H}^{\prime}-\mathrm{C}(6)$	$J(2,3)$	$J(3,4)$	$J(4,5)$	$J(5,6)$	$J(5,6)$	$J\left(6,6{ }^{\prime}\right)$
1	4.86	4.89	4.68	4.45	4.13	4.08	5.1	2.9	8.0	6.0	4.2	9.2
4	4.52	4.88	3.78	4.48	4.10	4.03	6.1	4.0	8.5	6.0	4.1	8.7
5a	4.49	4.88	3.76	4.46-4.50	4.13	4.13	6.0	3.9	8.4	${ }^{\text {b }}$)	${ }^{\text {b }}$)	${ }^{8}$)
b	4.70	4.92	3.59	4.38	4.08	3.96	5.9	3.8	8.7	6.2	3.4	8.9
7 a	4.59	4.88	3.82	4.50	4.00-4.08	4.00-4.08	6.0	4.5	7.5	5.3	5.3	${ }^{\text {b }}$)
b	4.59	4.86	3.74	4.44	4.09	4.00-4.08	6.0	4.0	8.3	6.1	4.0	8.8
9 a	4.52	4.84	3.65	4.45	3.95-4.20	3.95-4.20	6.0	4.0	9.0	6.0	3.5	${ }^{\text {b }}$)
b	4.96	4.85	3.64	4.37	3.95-4.20	3.95-4.20	6.0	4.0	9.0	6.0	3.5	${ }^{\text {b }}$)
10a	4.51	4.87	3.80	3.76-4.04	3.76-4.04	3.76-4.04	5.9	4.2	8.5	${ }^{\text {b }}$)	${ }^{\text {b }}$)	${ }^{\text {b }}$)
b	4.96	4.89	3.81	3.58-3.96	3.58-3.96	3.58-3.96	6.0	4.0	8.0	${ }^{\text {b }}$)	${ }^{\text {b }}$)	${ }^{\text {b }}$)
11	4.74	4.79	3.52	4.45	4.15	4.04	6.0	3.3	8.3	6.2	3.8	9.1
12)	4.64	4.70	3.41	4.40	4.08	4.08	6.0	3.5	7.4	5.3	5.3	${ }^{\text {b }}$)
$\left.13^{\text {d }}\right)^{\text {e }}$)	3.87	4.24	3.51	3.72	3.54	3.33	5	7	7	3.8	6.5	11.0
16a	4.74	4.84	3.58	4.44	4.14	4.05	5.8	3.9	8.1	6.0	3.7	8.9
b	4.73	4.86	3.79	4.37	4.10	3.98	5.8	3.6	8.8	6.2	4.2	8.8
21	4.97	5.18	4.40	4.44	4.08	3.98	5.8	3.5	8.3	5.7	3.7	8.9
22	4.84	4.87	3.70	4.40	4.06	3.96	5.8	3.4	8.0	6.1	3.9	9.0
26	4.56	4.82	3.80	4.40	4.11	4.01	5.8	3.8	7.9	6.2	4.3	8.8
27	4.57	4.96	3.79	4.50	4.10	4.02	5.9	3.7	8.2	6.0	3.9	8.9
31	5.37	4.95	3.90	4.45	4.06	3.86	5.8	3.4	8.4	6.1	3.8	8.9
8 ${ }^{\text {d }}$)	5.29	4.54	3.30	3.78-3.97	3.78-3.97	3.78-3.97	7.5	2.0	8.0	${ }^{\text {b }}$)	${ }^{\text {b }}$)	${ }^{\text {b }}$)
23	5.75	4.85	3.58	3.98	4.03	3.87	7.8	0.9	8.3	6.1	4.7	8.0
24	5.76	4.65	3.13	3.95	4.03	3.83	7.5	1.9	8.2	6.2	5.4	8.5
17	5.86	4.91	4.27	4.52	4.16	4.08	6.0	4.2	7.0	6.1	4.7	8.8
18)	4.97	4.34	4.20	3.81-3.90	3.63	3.46	4.0	4.0	9.0	2.8	5.5	12.0
29	5.14	4.78	4.38	4.47-4.54	4.08-4.24	4.08-4.24	6.0	3.5	8.0	${ }^{\text {b }}$)	${ }^{\text {b }}$)	${ }^{\text {b }}$)
30	5.76	4.86	4.04-4.24	4.44-4.51	4.04-4.24	4.04-4.24	6.1	4.0	${ }^{\text {b }}$)			
32	5.75	4.84	4.33	4.50	4.07-4.19	4.07-4.19	5.7	3.7	7.5	6.0	4.5	${ }^{\text {b }}$)

${ }^{\text {a }}$) Numbering as in $\mathbf{1 . ~}^{\text {b }}$) Not determined. ${ }^{\text {c }) ~} \mathrm{H}-\mathrm{C}(1)$ at $\left.3.08 \mathrm{ppm}, J(1,2)=3.0, J\left(1,1^{\prime}\right)=9.5 \mathrm{~Hz} .^{d}\right)$ In $\left.\left(\mathrm{D}_{6}\right) \mathrm{DMSO} .{ }^{e}\right) \mathrm{H}-\mathrm{C}(1)$ at $3.12 \mathrm{ppm}, J(1,2)=3.8, J\left(1,1^{\prime}\right)=10.0 \mathrm{~Hz}$.
Table. 3. NOE Experiments on the Adducts 4, 5, 7, 10, and 16

	Irradiation [ppm] (assignment)		NOE [ppm] (enhancement in \%, assignment)					
4	4.52	($\mathrm{H}-\mathrm{C}(6)$)	4.88	(10.0, H-C(7))	2.32	(3.8, $2 \mathrm{H}-\mathrm{C}(4)$)		
	2.32	($2 \mathrm{H}-\mathrm{C}(4)$)	4.52	(13.8, H-C(6))	3.78	(13.8, H-C(8))		
5a	6.73	($\mathrm{H}-\mathrm{C}\left(3^{\prime}\right)$)	5.93	($6.4, \mathrm{H}-\mathrm{C}\left(2^{\prime}\right)$)	3.99	(5.8, H-C(4'))		
	5.93	(H-C(2^{\prime})	6.73	(7.9, H-C(3^{\prime}))	3.24	(4.6, H-C(1^{\prime}))	4.49	(6.7, H-C(2))
	4.49	($\mathrm{H}-\mathrm{C}(2)$)	4.88	(11.0, H-C(3))	5.93	(8.6, H-C(2^{\prime}))	3.24	(2.0, H-C(1'))
	3.99	($\mathrm{H}-\mathrm{C}\left(4^{\prime}\right)$)	6.73	(7.1, H-C($\left.3^{\prime}\right)$)	2.21	(2.9, H-C(5^{\prime}))	1.94	(2.5, H'-C($\left.5^{\prime}\right)$)
	3.24	($\mathrm{H}-\mathrm{C}\left(1^{\prime}\right)$)	5.93	(6.7, H-C(2^{\prime}))	2.21	(2.1, H-C(5'))	1.94	(3.8, $\mathrm{H}^{\prime}-\mathrm{C}\left(5^{\prime}\right)$)
			3.76	(11.3, H-C(4))	4.49	(2.5, H-C(2))		
	2.21	(H-C(5'))	1.94	(24.2, $\mathrm{H}^{\prime}-\mathrm{C}\left(5^{\prime}\right)$)	3.99	(5.2, H-C(4'))	3.24	(1.9, H-C(1'))
	1.94	($\mathrm{H}^{\prime}-\mathrm{C}\left(5^{\prime}\right)$)	2.21	(22.5, H-C(5^{\prime}))	3.99	(4.2, H-C(4'))	3.24	(4.2, H-C (1'))
5b	6.62	(H-C(3'))	5.95	(7.7, H-C(2^{\prime}))	4.02	(7.4, H-C(4'))		
	5.95	($\mathrm{H}-\mathrm{C}\left(2^{\prime}\right)$)	6.62	(8.2, H-C($\left.3^{\prime}\right)$)	3.26	(4.3, H-C(1'))	3.59	(1.6, H-C(4))
	4.70	($\mathrm{H}-\mathrm{C}(2)$)	4.92	(6.0, H-C(3))	3.26	(6.3, H-C(1^{\prime}))	1.91	(4.3, $2 \mathrm{H}-\mathrm{C}\left(5^{\prime}\right)$)
	4.02	(H-C(4'))	6.62	(8.2, H-C(3^{\prime}))	1.91	(4.0, 2 H-C(5^{\prime}))	5.95	(1.4, H-C(2^{\prime}))
	3.26	(H-C(1^{\prime})	5.95	($6.8, \mathrm{H}-\mathrm{C}\left(2^{\prime}\right)$)	1.91	(4.5, $2 \mathrm{H}-\mathrm{C}\left(5^{\prime}\right)$)	3.59	(7.4, H-C(4))
			4.70	(6.8, H-C(2))				
	1.91	($2 \mathrm{H}-\mathrm{C}\left(5^{\prime}\right)$)	4.02	(10.8, H-C(4'))	3.26	(10.5, H-C(1'))	4.70	(8.8, H-C (2))
7a	4.59	(H-C(6))	4.88	(6.9, H-C(7))	2.47	(4.5, H-C(4))		
	2.47	($\mathrm{H}-\mathrm{C}(4)$)	4.59	(3.1, H-C(6))	5.27	($1.0, \mathrm{H}-\mathrm{C}(1)$)	5.16	(1.0, H-C (2))
	2.38	($\mathrm{H}^{\prime}-\mathrm{C}(4)$)	3.82	(2.1, H-C(8))	4.59	($1.1, \mathrm{H}-\mathrm{C}(6)$)		
7b	4.59	(H-C(6))	4.86	(6.9, H-C(7))	2.42	($4.5, \mathrm{H}-\mathrm{C}(4)$)		
10a	4.87	($\mathrm{H}-\mathrm{C}(3)$)	4.51	(7.7, H-C(2))	3.80	(7.7, H-C(4))		
	4.51	($\mathrm{H}-\mathrm{C}(2)$)	4.87	(${ }^{2}$) , $\mathrm{H}-\mathrm{C}(3)$)	6.19	(4.6, H-C(2^{\prime})	2.80	(4.2, $\mathrm{H}-\mathrm{C}\left(1^{\prime}\right)$)
	3.50	(H-C(4'))	6.77	(9.5, H-C($\left.3^{\prime}\right)$)				
10b	4.96	($\mathrm{H}-\mathrm{C}(2)$)	1.80	(6.4, H-C(6^{\prime}))	2.97	(4.3, H-C(1'))		
	3.59	($\mathrm{H}-\mathrm{C}\left(4^{\prime}\right)$)	6.64	(9.9, H-C($\left.3^{\prime}\right)$)				
	2.97	$\left(\mathrm{H}-\mathrm{C}\left(1^{\prime}\right)\right.$)	6.10	(10.3, H-C(2^{\prime}))	3.81	(6.0, H-C(4))	4.96	(3.4, H-C(2))
16a	4.74	($\mathrm{H}-\mathrm{C}(2)$)	2.80	$\left(4.4, \mathrm{H}-\mathrm{C}\left(3^{\prime}\right)\right)$				
	3.58	($\mathrm{H}-\mathrm{C}(4)$)	2.80	(11.3, H-C($\left.3^{\prime}\right)$)	4.84	(8.8, H-C(3))	4.44	(3.1, $\mathrm{H}-\mathrm{C}(5)$)
			4.05	(2.5, H-C(6))				
	2.80	($\mathrm{H}-\mathrm{C}\left(3^{\prime}\right)$)	3.58	(12.5, H-C(4))	4.74	(7.5, H-C(2))	1.84	(2.5, H-C(4'))
16b	4.73	($\mathrm{H}-\mathrm{C}(2)$)	3.79	(3.5, H-C(4))	2.15	$\left(6.9, \mathrm{H}-\mathrm{C}\left(4^{\prime}\right)\right)$	2.91	(4.9, H-C(3^{\prime}))
	3.79	($\mathrm{H}-\mathrm{C}(4)$)	2.91	(10.4, H-C(3'))	4.86	(9.7, H-C(3))		
	2.91	($\mathrm{H}-\mathrm{C}\left(3^{\prime}\right)$)	3.79	(13.2, H-C(4))	4.73	(4.9, H-C(2))	1.95	(2.8, H-C(4'))

The EI-MS of 7a/b shows signals typical for methyl glycosides ($[\mathrm{M}-\mathrm{MeO}]^{+}$at $m / z 457$) and isopropylidene acetals ([M-Me] ${ }^{+}$at $m / z 473$). The enol-ether moiety absorbs at $1674 \mathrm{~cm}^{-1}$. In the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum, integration of the signals for $\mathrm{H}-\mathrm{C}(7)$ at 4.88 and 4.86 ppm , for $\mathrm{H}-\mathrm{C}(9)$ at 4.50 and 4.44 ppm , for $\mathrm{H}-\mathrm{C}(8)$ at 3.82 and 3.74 ppm , and for MeO at 3.33 and 3.36 ppm allows to determine the ratio of anomers. The configuration of the spiro centre $\mathrm{C}(5)$ is assigned on the basis of NOE experiments (Table 3). Irradiation at $\mathrm{H}-\mathrm{C}(6)$ of $\mathbf{7 a}$ and $7 \mathbf{b}$, respectively, leads to intensity enhancements of the more complex signal of $\mathrm{H}-\mathrm{C}(4)$, the $t d$ at $2.47(7 \mathrm{a})$ and the $d d$ at $2.42 \mathrm{ppm}(7 \mathrm{~b})$, whereas no effect is observed for the $d \mathrm{~s}$ at 2.61 ($\mathbf{7 b}$) and 2.38 ppm (7a). This suggests that in 7a and 7b $\mathrm{H}-\mathrm{C}(4)$, cis to $\mathrm{C}(6)$ and showing an allylic coupling [29] with $\mathrm{H}-\mathrm{C}(2)$, is axial, and that the transoriented $\mathrm{H}-\mathrm{C}(4)$ (no allylic coupling) is equatorial. This is the case in a ${ }^{5} H_{4}$ conformation of the thiopyran ring, similar to the one which is observed for the solid state of 4 . This conformation is corroborated by the NOE values obtained upon irradiation at both $\mathrm{H}-\mathrm{C}(4)$ of 7 a (compare with the H, H distances in 4 , Table 1). $\mathrm{H}-\mathrm{C}(1)$ of 7 a appears as a $d d$ at $5.16(J=1.7,4.6 \mathrm{~Hz})$, while $\mathrm{H}-\mathrm{C}(1)$ of $\mathbf{7 b}$ resonates as a br. d at $5.19 \mathrm{ppm}(J=5.6 \mathrm{~Hz})$. The $\mathrm{H}-\mathrm{C}(1)$ signal of 7 a shows a homoallylic coupling [29] with $\mathrm{H}-\mathrm{C}(4)$ at 2.47 ppm . Homoallylic coupling is maximal, when both H are cis-oriented and in the π-plane of a double bond (e.g. in the flag-pole positions of the boat conformer of cyclohexa-1,3-dienes) [30]. The ${ }^{s} H_{1}$ conformation of 7 a is destabilized by the cis-diaxial orientation of $\mathrm{O}-\mathrm{C}(5)$ and MeO . Therefore, the ${ }^{1,4} \mathrm{~B}$ conformation ($\mathrm{H}-\mathrm{C}(1)$ and $\mathrm{H}-\mathrm{C}(4)$ in flag-pole positions) should be favored. The assignment is in keeping with a weak NOE between $\mathrm{H}-\mathrm{C}(4)$ and $\mathrm{H}-\mathrm{C}(1)$ of 7a. The isomeric 7b lacks this unfavorable interaction and should adopt a ${ }^{s} H_{1}$ conformation, where only a weak homoallylic coupling (visible as line broadening) between the trans-diaxial $\mathrm{H}-\mathrm{C}(1)$ and $\mathrm{H}-\mathrm{C}(4)$ is expected.

The UV and the IR spectrum of 8 show the typical bands for 4-thiopyranones at 301 and 292 nm [31] and at $1620 \mathrm{~cm}^{-1}$ [32]. The OH band appears at $3385 \mathrm{~cm}^{-1}$. In agreement with the aromatic character of the thiopyranone ring, $\mathrm{H}-\mathrm{C}\left(6^{\prime}\right), \mathrm{H}-\mathrm{C}\left(3^{\prime}\right)$, and $\mathrm{H}-\mathrm{C}\left(5^{\prime}\right)$ resonate at low field ($8.18,6.88$, and $6.83 \mathrm{ppm}\left(\left(\mathrm{D}_{6}\right) \mathrm{DMSO}\right)$, resp.) as it was observed for the 2 'ethyl analogue of 8 [32]. The vicinal coupling constants of 8 are different from the ones of the furanoid derivatives (Table 2).

The ratio of $9 \mathbf{a} / \mathrm{b}$ is best determined by integration of the signals for $\mathrm{H}-\mathrm{C}(2)$ (4.52 and 4.96 ppm) and for $\mathrm{H}-\mathrm{C}(5)$ (4.45 and 4.37 ppm). The assignment of the configuration at $\mathrm{C}\left(1^{\prime}\right)$ and $\mathrm{C}\left(4^{\prime}\right)$ is based upon NOE experiments with the diols 10a and 10b (Table 3). Irradiation of $\mathrm{H}-\mathrm{C}(2)$ of 10 a leads to enhancements of the intensity for $\mathrm{H}-\mathrm{C}\left(1^{\prime}\right)$ and the olefinic H at 6.19 ppm ; irradiation of the corresponding signal of $\mathbf{1 0 b}$, however, results in enhancements of the intensity for $\mathrm{H}-\mathrm{C}\left(1^{\prime}\right)$ and the aliphatic H at 1.80 ppm . The ${ }^{1} \mathrm{H}$-NMR spectrum of 11 is characterized by the absence of signals for olefinic $\mathrm{H}^{\prime} \mathrm{s} . \mathrm{H}-\mathrm{C}\left(4^{\prime}\right)$ resonates at 2.90 ppm , ca. 0.6 ppm upfield relative to $\mathrm{H}-\mathrm{C}\left(4^{\prime}\right)$ of $9 \mathrm{a} / \mathrm{b}$ and $10 \mathrm{a} / \mathrm{b}$. A stronger upfield shift $(\Delta \delta c a .1 .4 \mathrm{ppm})$ is observed for $\mathrm{H}-\mathrm{C}\left(1^{\prime}\right)$. These chemical shifts and the MS prove the presence of the S-atom in 11.

Elemental analysis and the MS show the absence of an S-atom in 12. No signals for bridgehead H's are found in the ${ }^{1} \mathrm{H}$-NMR spectrum, and m's between 1.6 and $0.75 \mathrm{ppm}(11 \mathrm{H})$ evidence the cyclohexyl moiety. $\mathrm{H}-\mathrm{C}(1)$ resonates as a $d d$ at 3.08 ppm with $J(1,2)=3.0$ and $J\left(1,1^{\prime}\right)=9.5 \mathrm{~Hz}$. The vicinal coupling constants (Table 2) do not allow to assign the configuration at $\mathrm{C}(1)$. They are compatible, on the one hand, with a ${ }^{\circ} T_{4}$ conformation for an α-D- C-glycoside (similar to the conformation of 4 in the solid state and the preferred conformations of the cycloadducts in CDCl_{3} solution) and, on the other hand, with a ${ }^{\circ} \mathrm{E}$ conformation for a β-D-C-glycoside. In the ${ }^{1} \mathrm{H}$ NMR spectrum ($\left(\mathrm{D}_{6}\right) \mathrm{DMSO}$) of the tetrol 13, signals for 4 OH appear between 4.94 and 4.36 ppm . The $d d$ of $\mathrm{H}-\mathrm{C}(\mathrm{I})$ with $J(1,2)=3.8$ and $J\left(1,1^{\prime}\right)=10 \mathrm{~Hz}$ resonates at 3.12 ppm . Again, the configuration at $\mathrm{C}(1)$ cannot be assigned on the basis of vicinal coupling constants.

The structure of 13 was finally established by X-ray analysis (Fig. 2, Table 4). All substituents of the furanose ring are cis to each other, showing that the reduction of $9 \mathrm{a} / \mathrm{b}$ to 12 occurred with inversion of configuration. The cyclohexane ring of 13 adopts a chair and the furanose ring a southern conformation (between ${ }^{2} T_{3}$ and ${ }^{2} E$), which is also observed in solution ($\mathrm{D}_{2} \mathrm{O}$). No intramolecular H-bonds are observed (smallest distance of $2.38 \AA$ between $\mathrm{H}-\mathrm{O}(2)$ and $\mathrm{O}(4)$, but bond angle $\mathrm{O}(2)-\mathrm{H} \cdots \mathrm{O}(4)$ of $\left.103^{\circ}\right)$.

The electron-rich dihydropyridine 14 was used before in [1,4]-cycloadditions to electron-poor dienophiles [33] [34]. The reactive primary adducts, bridged tetrahydropyridines, are easily transformed into the corresponding lactams by selective desilylation with MeOH . Reaction of 1 with 14 at 100°, followed by methanolysis of the crude $15 a / b$ and by chromatographic separation of the diastereoisomers gave the lactams

Fig. 2. X-Ray structure of $\mathbf{1 3}$

Table 4. Selected Bond Lengths, and Bond and Dihedral Angles of 13. For numbering, see Fig. 2.

Bond Lengths $[\AA]$	Bond or Dihedral Angles [${ }^{\circ}$]				
$\mathrm{C}(1)-\mathrm{C}(2)$	$1.533(8)$	$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	$105.0(4)$	$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	169.5
$\mathrm{C}(2)-\mathrm{C}(3)$	$1.516(7)$	$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$101.9(4)$	$\mathrm{O}(2)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{O}(3)$	-56.3
$\mathrm{C}(3)-\mathrm{C}(4)$	$1.539(8)$	$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$103.7(4)$	$\mathrm{C}(4)-\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(7)$	-142.9
$\mathrm{C}(4)-\mathrm{C}(5)$	$1.532(7)$	$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{O}(1)$	$105.1(4)$	$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(7)$	155.3
$\mathrm{C}(5)-\mathrm{C}(6)$	$1.518(9)$	$\mathrm{C}(4)-\mathrm{O}(1)-\mathrm{C}(1)$	$111.3(5)$	$\mathrm{H}-\mathrm{C}(1)-\mathrm{C}(7)-\mathrm{H}$	-175.4
$\mathrm{C}(1)-\mathrm{O}(1)$	$1.440(8)$	$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(7)$	$11.2(6)$	$\mathrm{H}-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{H}$	34.0
$\mathrm{C}(2)-\mathrm{O}(5)$	$1.443(6)$	$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	-35.0	$\mathrm{H}-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{H}$	-35.6
$\mathrm{C}(3)-\mathrm{O}(4)$	$1.424(6)$	$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{O}(1)$	25.3	$\mathrm{H}-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{H}$	26.2
$\mathrm{C}(4)-\mathrm{O}(1)$	$1.435(7)$	$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{O}(1)-\mathrm{C}(1)$	-4.6	$\mathrm{H}-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{H}$	108.9
$\mathrm{C}(5)-\mathrm{O}(2)$	$1.436(6)$	$\mathrm{O}(1)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{O}(2)$	171.0	$\mathrm{H}-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{H}$	63.6
$\mathrm{C}(1)-\mathrm{C}(7)$	$1.514(8)$	$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{O}(2)$	-71.9	$\mathrm{H}-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{H}$	-53.8

16a (32\%) and 16b (38\%; Scheme 2). Treatment of crude $\mathbf{1 5 a} / \mathrm{b}$ with $\mathrm{Bu}_{4} \mathrm{NF} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ in THF, however, led to the unsaturated piperidinedione $17(92 \%)$ which was deprotected (aq. $\mathrm{AcOH}, 100^{\circ}$) to the tetrol $18(65 \%)$. The exclusive formation of 17 from the diastereoisomers $\mathbf{1 5 a} / \mathrm{b}$ indicates the intermediate formation of the mannofuranose O, S hemiacetal and the subsequent β-elimination of $\mathrm{H}_{2} \mathrm{~S}$. Similarly, the cycloaddition of 14 to the ribo-thio- O-lactone 2 followed by treatment with $\mathrm{Bu}_{4} \mathrm{NF} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ gave 19 (62%), which was deprotected to the triol 20 (74%).
Scheme 2

The mixture $\mathbf{1 6 a} / \mathbf{b}$ is characterized by a strong amide band at $1699 \mathrm{~cm}^{-1}$. NOE experiments revealed the neighborhood of $\mathrm{H}-\mathrm{C}(2)$ and of $\mathrm{H}-\mathrm{C}(4)$ with the bridgehead $\mathrm{H}-\mathrm{C}\left(3^{\prime}\right)$, both for $\mathbf{1 6 a}$ and $\mathbf{1 6 b}$ (Table 3). This evidences the completely regioselective addition (analogous to the one of 6), i.e. formation of a bond between the S - and the imino C -atom. The configurational assignment is based upon the NOE observed for the signal of one H of the ethylene bridge of $\mathbf{1 6 b}$ upon irradiation at $\mathrm{H}-\mathrm{C}(2)$ (Table 3).

The strong deshielding of $\mathrm{H}-\mathrm{C}(2)$ of $\mathbf{1 7}(5.86 \mathrm{ppm}), \mathbf{1 9}(6.06 \mathrm{ppm}), \mathbf{1 8}(4.97 \mathrm{ppm})$, and $\mathbf{2 0}(5.01 \mathrm{ppm})$ is due to an anisotropy effect of $\mathrm{O}=\mathrm{C}\left(2^{\prime}\right)$ (cf. [35] and 27/28) and indicates the (E)-configuration. Strong bands at 1693, 1666 , and $1598 \mathrm{~cm}^{-1}(\mathbf{1 8})$ and at 1689 and $1634 \mathrm{~cm}^{-1}(\mathbf{2 0})$ characterize the unsaturated imide function.

The addition of the dienes to $\mathbf{1}$ always occurred from the less hindered side. The preference for an 'endo'-orientation of the dienes (central atoms of the diene on the same side as $\mathrm{O}(5)$) is low. It increases in the series cyclopentadiene (50%), 14 (53%), cyclohexa-1,3-diene (60%), and $6(75 \%)$. Except for the heterodiene 14, the 'endo'-preference parallels the increasing electron-density of the dienes.
[1,3]-Dipolar Cycloaddition of Diazomethane and Cycloaddition of Carbenoids. The reaction of 1 (Scheme 3) with $\mathrm{CH}_{2} \mathrm{~N}_{2}$ at -10° in THF gave exclusively a 35:65 mixture of the the dihydrothiadiazoles 21 and 22 . At -78°, only slow addition (ratio 21/22 ca. 1:10) was observed. The $1,3,4$-isomer 21 decomposed slowly at room temperature, whereas the dihydro-1,2,3-thiadiazole 22 was stable. This mixture was separated by preparative HPLC at 5°. In an attempt to separate 21 and 22 by prep. HPLC on a Zorbax $-\mathrm{NH}_{2}$ column, 21 was transformed completely into 23, and 22 partially (ca. 30\%) into 24. The 1,3,4thiadiazole 23 was also obtained by treating a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution of 21 with $\mathrm{Et}_{3} \mathrm{~N}$, and the $1,2,3$-thiadiazole 24 by warming 22 in pyridine for 2 h at 80°.
Scheme 3

25

26

22

27

28

The decomposition of a solution of 21 in CDCl_{3} at 20° was monitored by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectroscopy. The decomposition was of first order with a half-life of 21.6 h . It led to a complex mixture, where the spirothiirane 27 (ca. 20-25\%, see below) and probably its anomer (ca.7-10\%) were identified by their characteristic d 's ($27: 2.63$ and $2.50 \mathrm{ppm}, J=$ 1.5 Hz ; anomer of 27: 3.00 and $2.82 \mathrm{ppm}, J=3.0 \mathrm{~Hz}$). The same complex mixture was obtained, when methyl acrylate (30 equiv.) was added, and no cycloaddition of the acrylate to $\mathbf{2 5}$ was observed. Thermolysis of $\mathbf{2 1}$ in MeOH , however, gave exclusively the O, O, S-ortholactone 26 . The intermediate thiocarbonylio methylide 25 even reacted partially with a slight excess of MeOH (1.2 equiv.) in CDCl_{3} (ca. 20% of 26). This reactivity is in contrast to the one which was reported for thiocarbonylio-methylides derived from thioketones. These methylides cycloadded to methyl acrylate already at
-40°, but did not react with MeOH at -40° in the absence of an acid, such as $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$ [20] [36]. These findings show the reduced enophilicity and the enhanced basicity of thiocarbonylio-methylides derived from thio- O-lactones.

In the solid state, 22 was stable at 105°. Melting at 115° was immediately followed by N_{2} evolution and decomposition. In petroleum ether at $100^{\circ}, 22$ was slowly (half-life $c a$. 6.5 h) transformed to the spirothirane 27 and the known enol ether 28 [37]. As expected, no trace of the anomer of 27 could be detected by ${ }^{1} \mathrm{H}-$ NMR spectroscopy.

Abstract

The different stabilities of the cycloadducts to $\mathrm{CH}_{2} \mathrm{~N}_{2}$ allow an easy assignment of the thiadiazole structures of $\mathbf{2 1}$ and 22 [2] [13] [17] [18]. This assignment is corroborated by the UV spectra (21: $245 \mathrm{~nm} ; \mathbf{2 2 : 2 7 0} \mathbf{n m}$). The azo group of 22 absorbs at $1505 \mathrm{~cm}^{-1}$, typical for 4,5-dihydro-1,2,3-thiadiazoles [16b], while no azo absorption of $\mathbf{2 1}$ can be detected. The 2,5-dihydro-1,3,4-thiadiazoles are characterized by the low-field shift of the CH_{2} signals [16] [21] (21: 5.90 and 5.67 ppm ; 22: 5.54 and 4.28 ppm) and of the spiro C -atom [19] (21: 140.8 ppm ; 22: 103.7 ppm). A large $\Delta \delta$ value (1.26 ppm) is observed for the two $\mathrm{H}-\mathrm{C}(4$ ') signals of 22. NOE's between the signal at 5.54 ppm and $\mathrm{H}-\mathrm{C}(4)$ and between the signal at 4.28 ppm and $\mathrm{H}-\mathrm{C}(2) / \mathrm{H}-\mathrm{C}(3)$ show that the more deshielded signal is on the same side as $\mathrm{O}-\mathrm{C}(1)$. In addition, these NOE's evidence the (R)-configuration of the spiro center and thus the addition of $\mathrm{CH}_{2} \mathrm{~N}_{2}$ to the 'exo'-side of $\mathbf{1}$. Maxima in the UV spectrum of 24 at 2.51 and 221 nm are characteristic for $1,2,3$-thiadiazoles [38]. The aromatic H's of 23 and 24 exhibit the same relative chemical shifts (23: 9.10 ppm ; 24: 8.65 ppm) as the ones of their 5^{\prime}-methyl analogues [21]. Similar vicinal $J(\mathrm{H}, \mathrm{H})$ for 8, 23, and 24 (Table 2) indicate that these compounds adopt about the same conformation in solution, which is similar to the one of 24 in the solid state (see below) as evidenced by the small $J(3,4)(0.9-2.0 \mathrm{~Hz})$. Except the aromatic signals, the ${ }^{33} \mathrm{C}$-NMR spectra of 23 and 24 differ only slightly (Table 5). The CI-MS of 26 shows peaks for $[M-\mathrm{Me}]^{+},[M-\mathrm{MeO}]^{+}$, and $[M-\mathrm{MeS}]^{+}$. The ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of 26 is characterized by the signals for MeO and MeS (3.31 and 2.08 ppm). A comparison with the spectra of the anomeric methyl demethoxy analogues [1] suggests the 'endo'-position of the MeS group. Indeed, a NOE of 1.7% between MeO and $\mathrm{H}-\mathrm{C}(4)$ corroborates the (1R)-configuration of 26 . High-field shifts of the signals for $\mathrm{H}-\mathrm{C}(1), \mathrm{H}^{\prime}-\mathrm{C}(1), \mathrm{C}(1)$, and $\mathrm{C}(2)$ of 27 ($2.63,2.50,29.52$, and 84.94 ppm , resp.) are due to the thiirane ring. The high-field shift of $\mathrm{H}-\mathrm{C}(5)$ (3.79 ppm) indicates the β-d-configuration of 27 . The spectroscopic data of 28 agree well with published data [37].

X-Ray analysis (Fig. 3, Table 6) established the hydroxy-1,2,3-thiadiazole structure of 24 and thus the expected regioselectivity of the 1,3-dipolar cycloaddition. The thiadiazole ring is completely flat. The S-atom lies above the dioxolane ring. No intramolecular H bond is formed.

Treatment of 1 with 3 equiv. of diethyl diazomalonate and a catalytic amount of $\mathrm{Rh}_{2}(\mathrm{OAc})_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ [24] [41] in toluene at 80° was accompanied by evolution of N_{2} and yielded $31(68 \%)$ as the main product (Scheme 4$)$. The minor product was the expected, known alkene 32 [35] (29\%). Complete transformation of 31 into 32 was achieved by treatment of the crude product with $\mathrm{P}\left(\mathrm{NMe}_{3}\right)_{3}$ at 80° [42]. Similarly, the ribo-thio- O lactone 2 gave the alkene $33(69 \%)$. As carbenoids derived from ethyl diazoacetate show a strong tendency to dimerize, a solution of ethyl diazoacetate was added slowly to a solution of 1 and a catalytic amount of $\mathrm{Rh}_{2}(\mathrm{OAc})_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ in boiling toluene. Even so, the complete conversion of 1 into 29 (33%) and 30 (26%) required 15 equiv. of the diazoacetate.
Table. $5 .{ }^{13} \mathrm{C}$-NMR ($50.6 \mathrm{ppm}, \mathrm{CDCl}_{3}$) Chemical Shifts [ppm] of 1, 21-24, 26, and $27^{\text {² }}$)

	1	21	22	$23{ }^{\text {b }}$)	24)	27 ${ }^{\text {b }}$
C(1)	218.98	140.82	103.72	171.03	154.89	84.94
C(2)	$86.57^{\text {c }}$)	84.59	85.69	75.88°)	$75.98{ }^{\text {c }}$)	83.89
C(3)	76.85	80.40	79.88	$77.48^{\text {c }}$)	$77.45{ }^{\text {c }}$)	80.46
C(4)	86.50°)	82.74	79.88	68.96	69.76	82.03
C(5)	72.13	72.89	72.61	74.76	73.00	72.89
C(6)	66.26	66.91	66.77	66.98	66.92	66.89
$3,4-\mathrm{O} \cdot \mathrm{Me}_{2} \mathrm{C}$	114.62, 27.13, 25.96	113.71, 26.16, 24.87	114.03, 25.99, 24.46	110.31, 26.45, 24.31	109.95, 26.37, 24.37	113.66, 26.08, 25.11
$5,6-\mathrm{O}-\mathrm{Me}_{2} \mathrm{C}$	109.78, 26.82, 24.94	109.49, 26.94, 25.18	109.40, 26.95, 25.00	109.55, 26.75, 25.29	109.49, 26.67, 25.14	109.39, 27.02, 25.1I
$\mathrm{CH}_{2} \mathrm{~N}_{2}$ or CHN_{2}	-	81.97	87.84	152.14	145.92	-
$\mathrm{CH}_{2} \mathrm{~S}$	-	-	-	-	-	29.52

Fig. 3: X-Ray Structure of 24

Table 6. Selected Bond Lengths, Bond and Dihedral Angles of 24. For numbering see Fig. 3.

Bond Lengths $[\AA]$	Bond or Dihedral Angles [${ }^{\circ}$]				
$\mathrm{C}(1)-\mathrm{C}(2)$	$1.481(11)$	$\mathrm{S}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	$125.0(6)$	$\mathrm{O}(1)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{O}(2)$	62.9
$\mathrm{C}(2)-\mathrm{C}(3)$	$1.549(11)$	$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$117.5(6)$	$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{O}(2)$	-172.7
$\mathrm{C}(3)-\mathrm{C}(4)$	$1.525(10)$	$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$118.7(6)$	$\mathrm{O}(5)-\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{S}(1)$	-32.9
$\mathrm{C}(4)-\mathrm{C}(5)$	$1.513(9)$	$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{O}(1)$	$111.2(6)$	$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{S}(1)$	84.4
$\mathrm{C}(2)-\mathrm{O}(5)$	$1.437(7)$	$\mathrm{C}(1)-\mathrm{S}(1)-\mathrm{N}(1)$	$94.0(4)$	$\mathrm{C}(1)-\mathrm{S}(1)-\mathrm{N}(1)-\mathrm{N}(2)$	-0.1
$\mathrm{C}(3)-\mathrm{O}(4)$	$1.431(9)$	$\mathrm{S}(1)-\mathrm{N}(1)-\mathrm{N}(2)$	$111.1(6)$	$\mathrm{S}(1)-\mathrm{N}(1)-\mathrm{N}(2)-\mathrm{C}(13)$	-0.9
$\mathrm{C}(4)-\mathrm{O}(1)$	$1.420(9)$	$\mathrm{N}(1)-\mathrm{N}(2)-\mathrm{C}(13)$	$113.3(7)$	$\mathrm{H}-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{H}$	21.3
$\mathrm{C}(1)-\mathrm{S}(1)$	$1.691(8)$	$\mathrm{C}(1)-\mathrm{C}(13)-\mathrm{N}(2)$	$115.4(8)$	$\mathrm{H}-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{H}$	-72.2
$\mathrm{~S}(1)-\mathrm{N}(1)$	$1.678(7)$	$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	20.9	$\mathrm{H}-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{H}$	64.6
$\mathrm{~N}(1)-\mathrm{N}(2)$	$1.275(13)$	$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{O}(1)$	-64.6	$\mathrm{H}-\mathrm{C}(4)-\mathrm{O}(1)-\mathrm{H}$	62.2
$\mathrm{~N}(2)-\mathrm{C}(13)$	$1.378(13)$	$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	170.7	$\mathrm{H}-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{H}$	123.2
$\mathrm{C}(1)-\mathrm{C}(13)$	$1.356(11)$	$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	71.9	$\mathrm{H}-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{H}$	2.0

The structure of 31 was stablished by the MS and by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectroscopy. 'exo'-Attack of diazomalonate on 1 is evidenced by the shift values of $\mathrm{H}-\mathrm{C}(6)$ (3.90 ppm) and $\mathrm{H}-\mathrm{C}(4)$ (5.37 ppm) (Table 2). The spectroscopic data of 32 are in agreement with the published ones [35]. The crystalline $\mathbf{3 1}$ shows characteristic IR bands at 1722 and $1630 \mathrm{~cm}^{-1}$ and a strong deshielding of $\mathrm{H}-\mathrm{C}(4)$, resonating at 5.99 ppm . The (E / Z)-isomers 29 and 30 are characterized by similar EI-MS with $[M-15]^{+}$at $m / z 313$. In the 'H-NMR spectra, 29 and 30 show signals for one olefinic $\mathrm{H}(5.11 \mathbf{(2 9)}$ and $5.43(\mathbf{3 0}) \mathrm{ppm})$ appearing as d (W-coupling with $\mathrm{H}-\mathrm{C}(4)$). The assignment of the configuration is based upon the deshielding of $\mathrm{H}-\mathrm{C}(4)$ in 30 ($5.76 \mathrm{ppm}, \mathbf{2 9 : 5 . 1 4} \mathrm{ppm}$).

Scheme 4

1

We thank F. Hoffmann-La Roche AG, Basle, for financial support, Dr. J. J. Daly, and P. Schönholzer for the X-ray analyses, and Dr. W. Arnold, Dr. A. Dirscherl, Dr. M. Grosjean, W. Meister, and W. Walther for spectroscopic and analytical measurements.

Experimental Part

General. See [1]. The cycloadditions were performed in a pressure-stable, closed vessel. Excess diene was distilled off and the products were purified by flash chromatography. Prep. HPLC: $250 \times 20 \mathrm{~mm}$ column (Bischoff) with Si60 Spherisorb ($5 \mu \mathrm{~m}$) or with a $250 \times 20 \mathrm{~mm}$ Zorbax $-\mathrm{NH}_{2}$ column, flow rate 10 and $15 \mathrm{ml} / \mathrm{min}$, respectively, UV detection (250 nm) .

1,5-Anhydro-2,3,4-trideoxy-6,7:9,10-di-O-isopropylidene-2,3-di-C-methyl-1-thio- β-D-manno-dec-2-en-5ulofuranose $\left(=(1 \mathrm{~S})-3^{\prime}, 6 '\right.$-Dihydro-2,3:5,6-di-O-isopropylidene-4',5'-dimethylspiro[[1,4]anhydro-D-mannitol-$1,2^{\prime}-[2 \mathrm{H}]$ thiopyran $\left.] ; 4\right)$. A mixture of $1(274 \mathrm{mg}, 1 \mathrm{mmol})$ and $3(1 \mathrm{ml})$ was stirred in a closed vessel for 3.5 h at 150°. FC (25 g , hexane/AcOEt 7:1) of the residue gave 4 ($260 \mathrm{mg}, 73 \%$). R_{f} (hexane/AcOEt 7:1) 0.21. M.p. 92°. IR (KBr): 2980w, 2938s, 2879m, 2809w, 1454w, 1406w, 1374s, 1275m, 1251m, 1208s, 1165m, 1095s, 1071s, $1042 m, 1007 w, 977 w, 891 w, 839 m, 801 w, 795 w, 509 w$. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 4.88(d d, J=4.0,6.1$, $\mathrm{H}-\mathrm{C}(7)) ; 4.52(d, J=6.1, \mathrm{H}-\mathrm{C}(6)) ; 4.48(d d d, J=4.1,6.0,8.5, \mathrm{H}-\mathrm{C}(9)) ; 4.10(d d, J=6.0,8.7, \mathrm{H}-\mathrm{C}(10)) ; 4.03$ $\left(d d, J=4.1,8.7, \mathrm{H}^{\prime}-\mathrm{C}(10)\right) ; 3.78(d d, J=4.0,8.5, \mathrm{H}-\mathrm{C}(8)) ; 3.24(d, J=15.0, \mathrm{H}-\mathrm{C}(1)) ; 2.97\left(d, J=15.0, \mathrm{H}^{\prime}-\right.$ $\mathrm{C}(1)) ; 2.32(s, 2 \mathrm{H}-(4)) ; 1.77,1.71(2 \mathrm{~s}$, $\mathrm{Me}-\mathrm{C}(2)$, $\mathrm{Me}-\mathrm{C}(3)) ; 1.57(s, \mathrm{Me}) ; 1.46$ ($s, \mathrm{Me}) ; 1.37(s, 2 \mathrm{Me})$. NOE:

Table 3. EI-MS: 341 (21, [M - Me] ${ }^{+}$), 298 (17), 259 (7), 167 (58), 141 (39), 125 (55), 101 (72), 82 (56), 68 (35), 59 (42), 43 (100). Anal. calc. for $\mathrm{C}_{18} \mathrm{H}_{28} \mathrm{O}_{5} \mathrm{~S}$ (356.48): C 60.65, H 7.92, S 8.99; found: C 60.56, H 7.99, S 8.96.

Abstract

(I'S,4 R)- and (1 R,4'S)-I, I^{4}-Anhydro-2,3:5,6-di-O-isopropylidene-1-C-(4'-mercaptocyclopent-2'-en-1'-yl)-β-D-mannofuranose ($=\left(1 \mathrm{~S}, 1 \mathrm{R}, 4{ }^{\prime} \mathrm{S}\right)$ - and ($1 \mathrm{~S}, 1$ 'S,4R)-2,3:5,6-di-O-isopropylidenespiro[[1,4]anhydro-D-mannitol-1,3'-[2]thiabicyclo[2.2.1]hept/5]ene]; $5 \mathrm{a} / \mathrm{b}$). A soln. of 1 ($274 \mathrm{mg}, 1 \mathrm{mmol}$) in cyclopentadiene (1 ml) was stirred in a closed vessel for 3 h at 80°. FC (25 g , hexane/AcOEt 4:1) gave $\mathbf{5 a} / \mathrm{b}$ (313 mg). An additional FC (50 g , hexane/AcOEt $5: 1$) gave $\mathbf{5 a}(115 \mathrm{mg}, 34 \%$) and $\mathbf{5 b}$ ($123 \mathrm{mg}, 36 \%$).

Data of 5a: $R_{\text {f }}$ (hexane/AcOEt 5:1) 0.18. M.p. 110-111 ${ }^{\circ}$. IR (KBr): 2995m, $2940 \mathrm{~m}, 2879 w, 1459 w, 1375 m$, $1334 w, 1275 m, 1260 s, 1206 s, 1164 m, 1095 s, 1062 s, 1030 m, 998 m, 972 m, 931 w, 885 w, 847 m, 801 w, 749 m$, $512 w .{ }^{1} \mathrm{H}$-NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $6.73\left(d d, J=2.8,5.5, \mathrm{H}-\mathrm{C}\left(3^{\prime}\right)\right.$); $5.93\left(d d, J=3.0,5.5, \mathrm{H}-\mathrm{C}\left(2^{\prime}\right)\right) ; 4.88(d d$, $J=3.9,6.0, \mathrm{H}-\mathrm{C}(3)) ; 4.49(d, J=6.0, \mathrm{H}-\mathrm{C}(2)) ; 4.46-4.50(m, \mathrm{H}-\mathrm{C}(5)) ; 4.13(d, J=4.8,2 \mathrm{H}-\mathrm{C}(6)) ; 3.98-4.00$ $\left(m, \mathrm{H}-\mathrm{C}\left(4^{\prime}\right)\right) ; 3.76(d d, J=3.9,8.4, \mathrm{H}-\mathrm{C}(4)) ; 3.23-3.25\left(m, \mathrm{H}-\mathrm{C}\left(1^{\prime}\right)\right) ; 2.21\left(d, J=8.4, \mathrm{H}-\mathrm{C}\left(5^{\prime}\right)\right) ; 1.94(t d, J=2.2$, 8.4, $\mathrm{H}^{+}-\mathrm{C}\left(5^{\prime}\right)$); $1.49(s, \mathrm{Me}) ; 1.48(s, \mathrm{Me}) ; 1.39(s, \mathrm{Me}) ; 1.32(s, \mathrm{Me}) ;$ NOE: Table 3. CI-MS: $\left.340\left(1, M^{+}\right)\right), 325$ (2), 275 (19), 259 (18), 141 (12), 101 (34), 85 (15), 66 (52), 43 (100). Anal. calc. for $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{O}_{5} \mathrm{~S}$ (340.43): C 59.98, H 7.11, S 9.42 ; found: C 60.04, H 7.14, S 9.36.

Data of $5 \mathrm{~b} . R_{\mathrm{t}}$ (hexane/AcOEt 5:1) 0.15 . M.p. $127-129^{\circ}$. IR (KBr): 2993m, 2942m, 2875w, $1463 w, 1376 m$, $1337 w, 1271 m, 1260 s, 1206 s, 1168 m, 1095 s, 1065 s, 1025 m, 993 m, 977 m, 931 w, 884 w, 847 m, 801 w, 749 m$, $513 w .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 6.62\left(d d, J=2.8,5.5, \mathrm{H}-\mathrm{C}\left(3^{\prime}\right)\right) ; 5.95\left(d d, J=3.2,5.5, \mathrm{H}-\mathrm{C}\left(2^{\prime}\right)\right) ; 4.92(d d$, $J=3.8,5.9, \mathrm{H}-\mathrm{C}(3)) ; 4.70(d, J=5.9, \mathrm{H}-\mathrm{C}(2)) ; 4.38(d d d, J=3.4,6.2,8.7, \mathrm{H}-\mathrm{C}(5)) ; 4.08(d d, J=6.2,8.9$, $\mathrm{H}-\mathrm{C}(6)) ; 4.01-4.03\left(m, \mathrm{H}-\mathrm{C}\left(4^{\prime}\right)\right) ; 3.96\left(d d, J=3.4 .8 .9, \mathrm{H}^{\prime}-\mathrm{C}(6)\right) ; 3.59(d d, J=3.8,8.7, \mathrm{H}-\mathrm{C}(4)) ; 3.25-3.27(m$, H-C(1')); $1.91\left(s, 2 \mathrm{H}-\mathrm{C}\left(5^{\prime}\right)\right) ; 1.50(s, \mathrm{Me}) ; 1.48(s, \mathrm{Me}) ; 1.40(s, \mathrm{Me}) ; 1.37(s, \mathrm{Me})$; NOE: Table 3. CI-MS: 340 (3, M^{+}), 325 (5), 275 (15), 259 (23), 141 (21), 101 (48), 85 (8), 66 (61), 43 (100).

Methyl (IR)- and (IS)-3-O-[(tert-Butyl)dimethylsilyl]-2,4-dideoxy-6,7:9,10-di-O-isopropylidene-5-thio- β -D-manno-dec-2-en-5-ulo-5,8-furano-1,5-pyranoside ($=(1 \mathrm{~S}, 6 \mathrm{~S})$ - and (1S,6R)-4'-[(tert-Butyl)dimethylsilyloxy]-3',6'-dihydro-2,3:5,6-di-O-isopropylidene-6'-methoxyspiro[[1,4]anhydro-D-mannitol-1,2'- 2 H]thiopyran]; $7 \mathrm{a} / \mathrm{b})$. A mixture of $1(274 \mathrm{mg}, 1 \mathrm{mmol})$ and $6[28](1 \mathrm{ml})$ was stirred in a closed vessel for 4 h at 110°. FC (25 g , hexane/AcOEt 9:1) gave a $3: 1$ mixture (${ }^{1} \mathrm{H}-\mathrm{NMR}$) $7 \mathrm{a} / \mathrm{b}$ ($402 \mathrm{mg}, 82 \%$). R_{f} (hexane/AcOEt 9:1) 0.21. IR (film): $2987 m, 2932 m, 2858 m, 1674 m, 1622 w, 1467 w, 1373 m, 1256 s, 1210 s, 1161 m, 1069 s, 979 w, 897 m, 841 s, 781 m$, $726 w .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 5.27(d d, J=1.7,4.6,0.75 \mathrm{H}), 5.21(d d, J=1.0,5.6,0.25 \mathrm{H}, \mathrm{H}-\mathrm{C}(2)) ; 5.19$ (br. $d, J=5.6,0.25 \mathrm{H}), 5.16(d d, J=1.7,4.6,0.75 \mathrm{H}, \mathrm{H}-\mathrm{C}(1)) ; 4.88(d d, J=4.5,6.0,0.75 \mathrm{H}), 4.86(d d, J=4.0$, $5.9,0.25 \mathrm{H}, \mathrm{H}-\mathrm{C}(7)) ; 4.59(d, J=6.0, \mathrm{H}-\mathrm{C}(6)) ; 4.50(t d, J \approx 5.3,7.7,0.75 \mathrm{H}), 4.44(d d d, J=4.0,6.1,8.4,0.25 \mathrm{H}$, $\mathrm{H}-\mathrm{C}(9)) ; 4.09(d d, J=6.1,8.8,0.25 \mathrm{H}), 4.00-4.08(m, 1.75 \mathrm{H}, 2 \mathrm{H}-\mathrm{C}(10)) ; 3.82(d d, J=4.1,7.7,0.75 \mathrm{H}), 3.74$ $(d d, J=3.9,8.3,0.25 \mathrm{H}, \mathrm{H}-\mathrm{C}(8)) ; 3.36(s, 0.75 \mathrm{H}), 3.33(s, 2.25 \mathrm{H}, \mathrm{MeO}) ; 2.61$ (br. $d, J=16.0,0.25 \mathrm{H}), 2.47$ ($t d$, $J=1.7,16.0,0.75 \mathrm{H}), 2.42(d d, J=1.7,16.0,0.25 \mathrm{H}), 2.38(d, J=10.0,0.75 \mathrm{H}, 2 \mathrm{H}-\mathrm{C}(4))$; $1.62(s, 2.25 \mathrm{H}), 1.56$ $(s, 0.75 \mathrm{H}, \mathrm{Me}) ; 1.43(s, 0.75 \mathrm{H}), 1.42(s, 2.25 \mathrm{H}, \mathrm{Me}) ; 1.37(s, 2 \mathrm{Me}) ; 0.92(s, t-\mathrm{Bu}) ; 0.20(s, 1.5 \mathrm{H}), 0.19(s, 2.25$ $\mathrm{H}), 0.17$ ($s, 2.25 \mathrm{H}, 2 \mathrm{MeSi})$. NOE: Table 3. EI-MS: 473 (9 , $\left.[M-\mathrm{Me}]^{+}\right), 457$ (6, [$\left.M-\mathrm{MeO}\right]^{+}$), 253 (13), 241 (14), 199 (8), $157(49), 143(100), 101(17), 85(75), 73(73), 43(54)$. Anal. calc. for $\mathrm{C}_{23} \mathrm{H}_{40} \mathrm{O}_{7} \mathrm{SSi}(488.71): \mathrm{C} 56.53, \mathrm{H}$ 8.25, S 6.56; found: C 56.77, H 8.38, S 6.30 .
(lS)-1,2:4,5-Di-O-isopropylidene-1-C-(4-oxo-4H-thiapyran-2-yl)-D-arabinitol (8). A soln. of 7a/b (136 $\mathrm{mg}, 0.28 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{ml})$ was treated with $\mathrm{Bu}_{4} \mathrm{NF}$ on silica gel ($\left.28 \mathrm{mg}, 0.028 \mathrm{mmol}\right)$ and stirred for 1 h at r.t. Filtration, evaporation of the filtrate, and crystallization of the residue from AcOEt gave 8 ($47 \mathrm{mg}, 49 \%$). R_{f} (AcOEt) 0.23. M.p. $184-185^{\circ} .[\alpha]_{\mathrm{D}}^{20}=-21.7\left(c=0.25, \mathrm{CHCl}_{3}\right)$. UV $\left(\mathrm{CHCl}_{3}\right): 292(17700), 301$ (14600). IR (KBr): $3385 w, 2988 w, 2898 w, 1620 s, 1564 m, 1376 m, 1301 w, 1257 m, 1212 s, 1161 s, 1051 s, 977 w, 888 s, 853 w$, $827 w, 739 w$. 'H-NMR ($250 \mathrm{MHz},\left(\mathrm{D}_{6}\right) \mathrm{DMSO}$): $8.18\left(d, J=10.2, \mathrm{H}-\mathrm{C}\left(6^{\prime}\right)\right) ; 6.88\left(d, J=1.0, \mathrm{H}-\mathrm{C}\left(3^{\prime}\right)\right) ; 6.83(d d$, $\left.J=1.0,10,2, \mathrm{H}-\mathrm{C}\left(5^{\prime}\right)\right) ; 5.29(d, J=7.5, \mathrm{H}-\mathrm{C}(1)) ; 4.67(d, J=8.0, \mathrm{OH}-\mathrm{C}(3)) ; 4.54(d d, J=2.0,7.5, \mathrm{H}-\mathrm{C}(2))$; $3.78-3.97(m, 3 \mathrm{H}) ; 3.30(d t, J=2.0,8.0, \mathrm{H}-\mathrm{C}(3)) ; 1.55(s, \mathrm{Me}) ; 1.36(s, \mathrm{Me}) ; 1.29(s, \mathrm{Me}) ; 1.24(s, \mathrm{Me}) . \mathrm{CI}-\mathrm{MS}:$ $343\left(2,[M+1]^{+}\right), 327(16), 284$ (4), 269 (15), 241 (9), 155 (32), 142 (100), 125 (12), 111 (14), 101 (58), 97 (23), 85 (25), 71 (28), 59 (34), 57 (36), 55 (31), 43 (99). Anal. calc. for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{O}_{6} \mathrm{~S}$ (342.41): C 56.13, H 6.48, S 9.36; found: C 55.90, H 6.53, S 9.07.
(1'S,4R)- and ($1 \mathrm{R}, 4$ S)-1 1 1^{4}-Anhydro-2,3:5,6-di- O -isopropylidene-1-C-(4'-mercaptocyclohex- 2^{\prime}-en-1'-yl)-β-D-mannofuranose (= (1S, $1 \mathrm{R}, 4$ 'S)- and ($1 \mathrm{~S}, 1$ 'S,4R)-2,3:5,6-Di-O-isopropylidenespirol/l,4]anhydro-D-mannitol-1,3'-[2]thiabicyclo[2.2.2]oct[5]ene];9a/b). A mixture of cyclohexa-1,3-diene (1 ml) and $\mathbf{1}$ ($274 \mathrm{mg}, 1$
mmol) was stirred in a closed vessel for 3 h at 180°. FC (25 g , hexane/AcOEt 5:1) gave a 2:3 mixture (${ }^{1} \mathrm{H}-\mathrm{NMR}$) $9 \mathrm{a} / \mathrm{b}\left(326 \mathrm{mg}, 92 \%\right.$). R_{f} (hexane/AcOEt 5:1) 0.17. $\mathbb{R}(\mathrm{KBr}): 3050 w, 2986 \mathrm{~m}, 2898 w, 1620 w, 1457 w, 1374 s$, $1268 \mathrm{~m}, 1211 \mathrm{~s}, 1166 s, 1114 \mathrm{~m}, 1036 s, 985 m, 924 w, 895 w, 847 m, 759 w, 722 w, 512 w .{ }^{1} \mathrm{H}-\mathrm{NMR}(250 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): 6.80(t, J=8.0,0.4 \mathrm{H}), 6.68(t, J=8.0,0.6 \mathrm{H}, \mathrm{H}-\mathrm{C}(3)) ; 6.19(t, J=8.0,0.4 \mathrm{H}), 6.16(t, J=8.0,0.6 \mathrm{H}$, $\left.\mathrm{H}^{\prime}-\mathrm{C}\left(2^{\prime}\right)\right) ; 4.96(d, J=6.0,0.6 \mathrm{H}), 4.52(d, J=6.0,0.4 \mathrm{H}, \mathrm{H}-\mathrm{C}(2)) ; 4.85(d d, J=4.0,6.0,0.6 \mathrm{H}), 4.84(d d, J=4.0$, $6.0,0.4 \mathrm{H}, \mathrm{H}-\mathrm{C}(3)) ; 4.45(d d d, J=3.5,6.0,9.0,0.4 \mathrm{H}), 4.37(d d d, J=3.5,6.0,9.0,0.6 \mathrm{H}, \mathrm{H}-\mathrm{C}(5)) ; 3.95-4.20(\mathrm{~m}$, $2 \mathrm{H}-\mathrm{C}(6)) ; 3.65(d d, J=4.0,9.0,0.4 \mathrm{H}), 3.64(d d, J=4.0,9.0,0.6 \mathrm{H}, \mathrm{H}-\mathrm{C}(4)) ; 3.48-3.62\left(m, \mathrm{H}-\mathrm{C}\left(4^{\prime}\right)\right) ; 2.87-$ $3.05\left(m, \mathrm{H}-\mathrm{C}\left(1^{\prime}\right)\right) ; 1.16-2.35(m, 4 \mathrm{H}) ; 1.51(s, 1.8 \mathrm{H}), 1.48(s, 1.2 \mathrm{H}, \mathrm{Me}) ; 1.46(s, \mathrm{Me}) ; 1.39(s, 1.8 \mathrm{H}), 1.38(s$, $1.2 \mathrm{H}, \mathrm{Me}) ; 1.36(s, 1.8 \mathrm{H}), 1.34$ ($s, 1.2 \mathrm{H}, \mathrm{Me})$. EI-MS: 354 ($3, M^{+}$), 339 (9), 321 (3), 296 (4), 275 (31), 141 (44), 126 (16), 101 (48), $98(25), 85(14), 80(100), 72(16), 68(24), 59(31), 43(100)$. Anal. calc. for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{5} \mathrm{~S}$ (354.46): C 60.99, H 7.39, S 9.04; found: C 60.73, H 7.50, S 8.93.
(1'S,4R)- and ($1 \mathrm{R}, 4^{\prime} \mathrm{S}$)-1, 1^{4}-Anhydro-2,3-O-isopropylidene-1-C-(4'-mercaptocyclohex-2'-en-1'yl)- β - o mannofuranose ($=(1 \mathrm{~S}, 1 \mathrm{R}, 4 \mathrm{~S})$ - and ($1 \mathrm{~S}, 1 \mathrm{~S}, 4 \mathrm{R}$)-2,3-O-Isopropylidenespiro[1,4]anhydro- D -mannitol-1,3'. [2]thiabicyclo[2.2.2]oct[5]ene]; 10a/b). A soln. of $\mathbf{9 a} / \mathrm{b}(100 \mathrm{mg}, 0.28 \mathrm{mmol})$ in $\mathrm{AcOH} / \mathrm{H}_{2} \mathrm{O} 1: 1(5 \mathrm{ml})$ was stirred for 16 h at r.t. FC (25 g , hexane/AcOEt $1: 4$) gave $\mathbf{1 0 a}(20 \mathrm{mg}, 21 \%), 10 \mathrm{a} / \mathrm{b}(24 \mathrm{mg}, 27 \%)$, and $10 \mathrm{~b}(20 \mathrm{mg}$, 21\%).

Data of 10a: R_{f} (hexane/AcOEt 1:4) 0.17. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 6.77\left(t, J=7.4, \mathrm{H}-\mathrm{C}\left(3^{\prime}\right)\right) ; 6.19(t$, $J=7.4, \mathrm{H}-\mathrm{C}\left(2^{\prime}\right)$); $4.87(d d, J=4.2,5.9, \mathrm{H}-\mathrm{C}(3)) ; 4.51(d, J=5.9, \mathrm{H}-\mathrm{C}(2)) ; 3.76-4.04(\mathrm{~m}, \mathrm{H}-\mathrm{C}(5), 2 \mathrm{H}-\mathrm{C}(6)) ;$ $3.80(d d, J=4.2,8.5, \mathrm{H}-\mathrm{C}(4)) ; 3.49-3.51\left(m, \mathrm{H}-\mathrm{C}\left(4^{\prime}\right)\right) ; 2.79-2.85\left(m, \mathrm{OH}, \mathrm{H}-\mathrm{C}\left(1^{\prime}\right)\right) ; 2.18-2.31(m, \mathrm{OH}, 2 \mathrm{CH}) ;$ $1.67-1.76(m, 1 \mathrm{H}) ; 1.17-1.24(m, 1 \mathrm{H}) ; 1.46(s, \mathrm{Me}) ; 1.33(\mathrm{~s}, \mathrm{Me})$; NOE: Table 3.

Data of 10b: ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 6.64\left(t, J=7.4, \mathrm{H}-\mathrm{C}\left(3^{\prime}\right)\right) ; 6.10\left(t, J=7.4, \mathrm{H}-\mathrm{C}\left(2^{\prime}\right)\right) ; 4.96(d, J=$ $6.0, \mathrm{H}-\mathrm{C}(2)) ; 4.89(d d, J=4.0,6.0, \mathrm{H}-\mathrm{C}(3)) ; 3.58-3.96(m, \mathrm{H}-\mathrm{C}(5), 2 \mathrm{H}-\mathrm{C}(6), \mathrm{H}-\mathrm{C}(4)) ; 3.81(d d, J=4.0,8.0$, $\mathrm{H}-\mathrm{C}(4)$); 2.96-2.99 ($m, \mathrm{H}-\mathrm{C}\left(1^{\prime}\right)$); 2.75-2.85 (m, OH); 2.19-2.25 (m, OH); 2.01-2.08 ($m, 1 \mathrm{H}$); 1.77-1.83 (m, $1 \mathrm{H}) ; 1.56-1.64(m, 1 \mathrm{H}) ; 1.44-1.48(m, 1 \mathrm{H}) ; 1.51(s, \mathrm{Me}) ; 1.39(s, \mathrm{Me})$; NOE: Table 3.
$1,1^{4}$-Anhydro-2,3:5,6-di-O-isopropylidene-1-C-(4'-mercaptocyclohex-1'-yl)- β-D-mannofuranose ($=(1 \mathrm{~S})$ -2,3:5,6-Di-O-isopropylidenespiro[[1,4]anhydro-D-mannitol-1,3'-[2]thiabicyclo[2.2.2]octane]; 11). A soln. of $9 \mathrm{a} / \mathrm{b}(100 \mathrm{mg}, 0.28 \mathrm{mmol})$ in $\mathrm{EtOH}(10 \mathrm{ml})$ was treated with Raney-Ni (Degussa B 113 Z; ca. 300 mg , washed with EtOH) and stirred for 4 h at r.t. The catalyst was filtered off and washed with EtOH. Evaporation of the combined filtrates and FC (25 g , hexane/AcOEt 7:1) of the residue gave $11(59 \mathrm{mg}, 53 \%) . R_{\mathrm{f}}$ (hexane/AcOEt 7:1) 0.25 . ${ }^{~} \mathrm{H}-\mathrm{NMR}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 4.79(d d, J=3.3,6.0, \mathrm{H}-\mathrm{C}(3)) ; 4.74(d, J=6.0, \mathrm{H}-\mathrm{C}(2)) ; 4.45(d d d, J=3.8$, $6.2,8.3, \mathrm{H}-\mathrm{C}(5)) ; 4.15(d d, J=6.2,9.1, \mathrm{H}-\mathrm{C}(6)) ; 4.04\left(d d, J=3.8,9.1, \mathrm{H}^{\prime}-\mathrm{C}(6)\right) ; 3.52(d d, J=3.3,8.3, \mathrm{H}-\mathrm{C}(4)) ;$ $2.82-2.88\left(m, \mathrm{H}-\mathrm{C}\left(4^{\prime}\right)\right) ; 1.72-2.11(m, 8 \mathrm{H}) ; 1.36-1.49(m, 1 \mathrm{H}) ; 1.53(s, \mathrm{Me}) ; 1.45(s, \mathrm{Me}) ; 1.38(s, \mathrm{Me}) ; 1.37(s$, Me). CI-MS: 341 (20, [$M-\mathrm{Me}]^{+}$), 325 (2), 298 (3), 255 (3), 214 (20), 141 (71), 101 (66), 81 (44), 68 (54), 43 (100).
(1S)-1,4-Anhydro-1-C-cyclohexyl-2,3:5,6-di-O-isopropylidene-D-mannitol (12). A mixture of 9a/b (354 $\mathrm{mg}, 1 \mathrm{mmol}$) and Raney-Ni (Degussa B $113 \mathrm{Z} ; 1 \mathrm{~g}$, washed several times with MeOH and once with dry dioxane) in dry dioxane (10 ml) was stirred for 1 h at 110°. The catalyst was filtered off (Celite) and washed with dioxane. Evaporation of the combined filtrates and FC (25 g , hexane/AcOEt 9:1) of the residue gave 12 ($251 \mathrm{mg}, 77 \%$). R_{f} (hexane/AcOEt 9:1) 0.17. [$\alpha]_{\mathrm{D}}^{20}=-5.7\left(c=0.58, \mathrm{CHCl}_{3}\right.$). IR (film): $2985 m, 2929 s, 2852 m, 1451 w, 1374 m$, $1262 \mathrm{~m}, 1209 \mathrm{~s}, 1161 \mathrm{~m}, 1102 \mathrm{~m}, 1071 \mathrm{~s}, 991 w, 924 w, 891 w, 847 w, 747 w .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 4.70(d d$, $J=3.5,6.0, \mathrm{H}-\mathrm{C}(3)) ; 4.64(d d, J=3.0,6.0, \mathrm{H}-\mathrm{C}(2)) ; 4.40(t d, J=5.3,7.5, \mathrm{H}-\mathrm{C}(5)) ; 4.08(d, J=5.3,2 \mathrm{H}-\mathrm{C}(6))$; $3.41(d d, J=3.5,7.5, \mathrm{H}-\mathrm{C}(4)) ; 3.08(d d, J=3.0,9.5, \mathrm{H}-\mathrm{C}(1)) ; 0.9-2.3(m, 11 \mathrm{H}) ; 1.47(s, \mathrm{Me}) ; 1.44(s, \mathrm{Me}) ; 1.38$ (s, Me); 1.32 (s, Me). Cl-MS: 311 (37, $\left[M-\right.$ Me] ${ }^{+}$), 193 (12), 149 (8), 141 (8), 111 (11), 101 (100), 83 (28), 72 (8), $59(18), 55(21), 43(53), 29(7)$. Anal. calc. for $\mathrm{C}_{18} \mathrm{H}_{30} \mathrm{O}_{5}$ (326.43): C 66.23, H 9.26; found: C 66.40, H 9.37.
(1S)-1,4-Anhydro-1-C-cyclohexyl-D-mannitol (13). A soln. of 12 ($700 \mathrm{mg}, 2.15 \mathrm{mmol}$) in $\mathrm{AcOH} / \mathrm{H}_{2} \mathrm{O}$ 1:1 (25 ml) was stirred for 1 h at 100°. Evaporation and crystallization of the residue from AcOEt gave $13(287 \mathrm{mg}$, 54%). R_{f} ($\mathrm{AcOEt} / \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O} 90: 9: 1$) 0.29. M.p. $131-132^{\circ}$. IR (KBr): 3470s (br.), $3414 s$ (br.), $3187 s$ (br.), 2920s, $2851 s, 1449 m, 1400 w, 1376 w, 1312 m, 1281 w, 1241 w, 1214 m, 1137 m, 1115 m, 1094 m, 1050 s, 925 w$, $889 w, 746 w, 662 w$. 'H-NMR (250 MHz , (D_{6})DMSO): $4.94\left(d, J=6.5\right.$, exchanged with $\mathrm{D}_{2} \mathrm{O}, \mathrm{OH}-\mathrm{C}(3)$); $4.70(d$, $J=4.5$, exchanged with $\left.\mathrm{D}_{2} \mathrm{O}, \mathrm{OH}-\mathrm{C}(5)\right) ; 4.64\left(d, J=6.0\right.$, exchanged with $\left.\mathrm{D}_{2} \mathrm{O}, \mathrm{OH}-\mathrm{C}(2)\right) ; 4.36(t, J=6.0$, exchanged with $\mathrm{D}_{2} \mathrm{O}, \mathrm{OH}-\mathrm{C}(6)$); 4.24 (br. $q, J \approx 6.0$; after addn. of $\mathrm{D}_{2} \mathrm{O}:$ br. $t, J \approx 6.0, \mathrm{H}-\mathrm{C}(3)$); 3.87 (br. $d t, J \approx$ $4.0,5.5$; after addn. of $\mathrm{D}_{2} \mathrm{O}$: br. $t, J \approx 4.3, \mathrm{H}-\mathrm{C}(2)$); 3.72 (br. $t t, J \approx 4.0,6.5$; after addn. of $\mathrm{D}_{2} \mathrm{O}$: signal hidden by
$\mathrm{D}_{2} \mathrm{O}, \mathrm{H}-\mathrm{C}(5)$); 3.54 (ddd, $J=3.8,6.0,11.0$; after addn. of $\mathrm{D}_{2} \mathrm{O}$: signal hidden by $\mathrm{D}_{2} \mathrm{O}, \mathrm{H}-\mathrm{C}(6)$); $3.51(t, J=7.0$, $\left.\mathrm{H}^{2} \mathrm{C}(4)\right) ; 3.33\left(t d, J=6.0,11.0\right.$; after addn. of $\left.\mathrm{D}_{2} \mathrm{O}: d d, J=6.5,11.0, \mathrm{H}^{\prime}-\mathrm{C}(6)\right) ; 3.12(d d, J=3.8,10.0, \mathrm{H}-\mathrm{C}(1))$; $1.58-1.90(m, 6 \mathrm{H}) ; 1.05-1.30(m, 3 \mathrm{H}) ; 0.75-0.98(m, 2 \mathrm{H})$. CI-MS: $215\left(0.5,\left[\mathrm{M}-\mathrm{CH}_{2} \mathrm{OH}\right]^{+}\right), 185(8), 168(9)$, 149 (7), 125 (18), $95(22), 81(16), 73(100), 55(34), 41(23), 29(16)$. Anal. calc. for $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{5}(246.30)$: C 58.52, H 9.00; found: C 58.62, H 8.97.

2,6-Bis[ftert-butyl)dimethylsilyloxy]-3,4-dihydropyridine [33] (14). A cooled (0°) soln. of glutarimide (1.13 $\mathrm{g}, 10 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(3.1 \mathrm{ml}, 22 \mathrm{mmol})$ in dry $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{ml})$ was treated dropwise with (tert-butyl)dimethylsilyl trifluoromethanesulfonate ($4.6 \mathrm{ml}, 20 \mathrm{mmol}$) and stirred for 1 h at 0°. The org. layer was separated (pipette) and the aq. layer extracted with $\mathrm{Et}_{2} \mathrm{O}(3 x)$. After drying $\left(\mathrm{MgSO}_{4}\right)$ and evaporation of the combined org. layers, bulb-to-bulb distillation ($140-150^{\circ}, 0.5 \mathrm{mbar}$) gave $14(3.04 \mathrm{~g}, 89 \%)$, which was directly used for the next step.
(3'S, 6 R)- and ($3 \mathrm{R}, 6^{\prime} \mathrm{S}$)-1, $1^{4}-$ Anhydro-2,3:5,6-di-O-isopropylidene-1-C-\{6'-[(tert-butyl)dimethylsilyloxy]-6'-mercapto- 2^{\prime}-oxopiperidin-3'-yl)- β-D-mannofuranose ($=(1 \mathrm{~S}, I$ R,4'S)- and (IS, 1 ' $\mathrm{S}, 4 \mathrm{R})-I^{\prime}[($ tert-Butyl)-dimethylsilyloxy]-2,3:5,6-di-O-isopropylidenespirol[1,4]anhydro-D-mannitol-1,3'-[2]thia[6]aza-bicyclo[2.2.2]octanJ-5'one; 16a/b). A mixture of $\mathbf{1}(274 \mathrm{mg}, 1 \mathrm{mmol})$ and $\mathbf{1 4}(513 \mathrm{mg}, 1.5 \mathrm{mmol})$ was stirred under Ar for 30 min at 100°, cooled to 20°, dissolved in $\mathrm{MeOH}(10 \mathrm{ml})$, stirred for 1 h at r.t., and then evaporated. FC (25 g , hexane/AcOEt 1:2) gave 16a/b ($423 \mathrm{mg}, 85 \%$). A second FC (25 g , hexane/AcOEt 1:1) gave 16a (159 $\mathrm{mg}, 32 \%$) and 16 b ($189 \mathrm{mg}, 38 \%$).

Data of 16a/16b: IR (KBr): $3076 w, 2986 w, 2934 m, 2858 w, 1699 s, 1465 w, 1411 w, 1375 m, 1319 w, 1259 s$, 1202s, $1124 \mathrm{~m}, 1068 \mathrm{~s}, 990 \mathrm{w}, 950 \mathrm{~m}, 849 \mathrm{~s}, 783 \mathrm{~m}$. EI-MS: 486 (7, [M - Me] ${ }^{+}$), 468 (9), 410 (11), 342 (12), 288 (13), 227 (57), 199 (22), 170 (14), 115 (11), 101 (24), 73 (100), 59 (20), 43 (52).

Data of 16a: R_{f} (hexane/AcOEt 1:1) $0.17 .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) ; 6.25(\mathrm{~s}, \mathrm{NH}) ; 4.84(d d, J=3.9,5.8$, $\mathrm{H}-\mathrm{C}(3)) ; 4.74(d, J=5.8, \mathrm{H}-\mathrm{C}(2)) ; 4.44(d d d, J=3.6,6.0,8.1, \mathrm{H}-\mathrm{C}(5)) ; 4.14(d d, J=6.0,8.9, \mathrm{H}-\mathrm{C}(6)) ; 4.05(d d$, $J=3.7,8.9, \mathrm{H}^{\prime}-\mathrm{C}(6)$); $3.58\left(d d, J=3.8,8.1, \mathrm{H}-\mathrm{C}(4)\right.$); 2.80 (br. $\left.s, \mathrm{H}-\mathrm{C}\left(3^{\prime}\right)\right) ; 2.57(d t, J=5.0,11.8,1 \mathrm{H}) ; 2.35-$ $2.41(m, 1 \mathrm{H}) ; 2.15$ ($d t, J=3.4,11.9,1 \mathrm{H}) ; 1.80-1.88(\mathrm{~m}, 1 \mathrm{H}) ; 1.48$ (s, Me); 1.46 (s, Me); 1.38 (s, Me); 1.34 (s, $\mathrm{Me}) ; 0.91(s, t-\mathrm{Bu}) ; 0.29(s, \mathrm{MeSi}) ; 0.24$ (s, MeSi); NOE: Table 3.

Data of 16b: $R_{\mathrm{f}}($ hexane $/ \mathrm{AcOEt} 1: 1) 0.15 .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 6.28(\mathrm{~s}, \mathrm{NH}) ; 4.86(d d, J=3.6,5.8$, $\mathrm{H}-\mathrm{C}(3)) ; 4.73(d, J=5.8, \mathrm{H}-\mathrm{C}(2)) ; 4.37(d d d, J=4.2,6.2,8.8, \mathrm{H}-\mathrm{C}(5)) ; 4.10(d d, J=6.2,8.8, \mathrm{H}-\mathrm{C}(6)) ; 3.98(d d$, $\left.J=4.2,8.8, \mathrm{H}^{\prime}-\mathrm{C}(6)\right) ; 3.79(d d, J=3.6,8.8, \mathrm{H}-\mathrm{C}(4)) ; 2.91-2.92\left(m, \mathrm{H}-\mathrm{C}\left(3^{\prime}\right)\right) ; 2.36-2.41(\mathrm{~m}, 1 \mathrm{H}) ; 1.91-2.09(m$, $3 \mathrm{H}) ; 1.52(s, \mathrm{Me}) ; 1.45(s, \mathrm{Me}) ; 1.39(s, \mathrm{Me}) ; 1.36(s, \mathrm{Me}) ; 0.90(s, t-\mathrm{Bu}) ; 0.27(s, \mathrm{MeSi}) ; 0.24(s, \mathrm{MeSi})$, NOE: Table 3.
(E)-1,4-Anhydro-1-(2,6-dioxopiperidin-3-ylidene)-2,3:5,6-di-O-isopropylidene-D-mannitol (= (E)-3-(2,3:5,6-Di-O-isopropylidene-D-mannofuranosylidene)piperidine-2,6-dione; 17). A mixture of 1 (822 mg , 3 mmol) and $14(1.539 \mathrm{~g}, 4.5 \mathrm{mmol})$ was stirred under Ar for 30 min at 100°, cooled to 20°, dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(25 \mathrm{ml})$, treated with $\mathrm{Bu}_{4} \mathrm{NF} 3 \mathrm{H}_{2} \mathrm{O}(2.8 \mathrm{~g}, 9 \mathrm{mmol})$, stirred for 30 min at r.t., and then evaporated. $\mathrm{FC}(50 \mathrm{~g}$, hexane/AcOEt 1:3) gave 17 ($975 \mathrm{mg}, 92 \%$). R_{f} (hexane/AcOEt 1:3) 0.21 . ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 7.86(s$, $\mathrm{NH}) ; 5.86(d, J=6.0, \mathrm{H}-\mathrm{C}(2)) ; 4.91(d d, J=4.2,6.0, \mathrm{H}-\mathrm{C}(3)) ; 4.52(d d d, J=4.7,6.1,7.0, \mathrm{H}-\mathrm{C}(5)) ; 4.27(d d$, $J=4.2,7.0, \mathrm{H}-\mathrm{C}(4)) ; 4.16(d d, J=6.1,8.8, \mathrm{H}-\mathrm{C}(6)) ; 4.08(d d, J=4.7,8.8, \mathrm{H}-\mathrm{C}(6)) ; 2.54-2.83(m, 4 \mathrm{H}) ; 1.48(s$, $\mathrm{Me}) ; 1.46(s, \mathrm{Me}) ; 1.44(s, \mathrm{Me}) ; 1.41$ (s, Me). CI-MS: 338 ($\left.41,[M-\mathrm{Me}]^{+}\right), 280(16), 238$ (41), 270 (19), 178 (9), 164 (8), 153 (7), 140 (10), 101 (100), 81 (10), 73 (13), 59 (16), 43 (78).
(E)-1,4-Anhydro-1-(2,6-dioxopiperidin-3-ylidene)-D-mannitol (=(E)-3-(D-Mannofuranosylidene)piperidine-2,6-dione; 18). A soln, of 17 ($530 \mathrm{mg}, 1.5 \mathrm{mmol}$) in $\mathrm{AcOH} / \mathrm{H}_{2} \mathrm{O} 1: 1(25 \mathrm{ml})$ was stirred for 30 min at 100°. Evaporation and crystallization of the residue from $\mathrm{H}_{2} \mathrm{O}(6 \mathrm{ml})$ gave $18(269 \mathrm{mg}, 65 \%)$. M.p. 210° (dec.). IR (KBr): $3472 s, 3357 w, 3120 w, 2978 w, 2915 w, 2864 w, 1693 s, 1666 s, 1598 s, 1451 w, 1423 w, 1388 w, 1344 m$, 1295s, 1251w, 1197s, 1132s, 1084m, 1031m, 972w, $887 m, 834 w, 774 w, 698 w, 667 w .{ }^{1} \mathrm{H}-\mathrm{NMR}(250 \mathrm{MHz}$, (D_{6})DMSO): $10.70(s, \mathrm{NH}) ; 6.77(d, J=1.0, \mathrm{OH}-\mathrm{C}(2)) ; 5.05(d, J=4.0, \mathrm{OH}-\mathrm{C}(3)) ; 4.97(d d, J=1.0,4.0$, $\mathrm{H}-\mathrm{C}(2)) ; 4.94(d, J=5.9, \mathrm{OH}-\mathrm{C}(5)) ; 4.59(t, J=5.5, \mathrm{OH}-\mathrm{C}(6)) ; 4.34(q, J=4.0, \mathrm{H}-\mathrm{C}(3)) ; 4.20(d d, J=4.0,9.0$, $\mathrm{H}-\mathrm{C}(4)) ; 3.81-3.90(m, \mathrm{H}-\mathrm{C}(5)) ; 3.63(d d d, J=2.8,5.5,12.0, \mathrm{H}-\mathrm{C}(6)) ; 3.46\left(t d, J=5.5,12.0, \mathrm{H}^{\prime}-\mathrm{C}(6)\right) ; 2.42-$ $2.58(m, 4 \mathrm{H})$. Anal. calc. for $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{NO}_{7}(273.24)$: C 48.35, H 5.53, N 5.13; found: C 48.17, H 5.71, N 5.16.

[^2]dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{ml})$, treated with $\mathrm{Bu}_{4} \mathrm{NF}_{3} 3 \mathrm{H}_{2} \mathrm{O}(6.6 \mathrm{~g}, 13 \mathrm{mmol})$, stirred for 1 h at r.t., and taken to dryness. FC (75 g , hexane/AcOEt 2:1) gave 19 ($978 \mathrm{mg}, 62 \%$). R_{f} (hexane/AcOEt 2:1) 0.16 . ${ }^{1} \mathrm{H}-\mathrm{NMR}(250 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): 7.69(s, \mathrm{NH}) ; 7.22-7.50(m, 15$ arom. H); $6.06(d, J=6.3, \mathrm{H}-\mathrm{C}(2)) ; 4.70-4.74(m, \mathrm{H}-\mathrm{C}(4)) ; 4.66(d d, J$ $=0.8,6.3, \mathrm{H}-\mathrm{C}(3)) ; 3.60(d d, J=2.5,10.5, \mathrm{H}-\mathrm{C}(5)) ; 3.04(d d, J=2.0,10.5, \mathrm{H}-\mathrm{C}(5)) ; 2.78-2.99(m, 2 \mathrm{H}) ; 2.58-$ $2.64(m, 2 \mathrm{H}) ; 1.45(s, \mathrm{Me}) ; 1.40(s, \mathrm{Me})$.
(E)-1,4-Anhydro-1-(2,6-dioxopiperidin-3-ylidene)-D-ribitol $(=$ (E)-3-(D-Ribofuranosylidene)piperidine-2,6dione; 20). A soln. of $19(500 \mathrm{mg}, 0.95 \mathrm{mmol})$ in $\mathrm{AcOH} / \mathrm{H}_{2} \mathrm{O} 1: 1(10 \mathrm{ml})$ was stirred for 30 min at 100°. Evaporation and FC (25 g , AcOEt/MeOH 95:5) of the residue gave $20(170 \mathrm{mg}, 74 \%$) which was crystallized from $\mathrm{EtOH} . R_{\mathrm{f}}\left(\mathrm{AcOEt} / \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O} 90: 9: 1\right)$ 0.28. M.p. $148-150^{\circ}$. IR (KBr): $3418 s, 2924 w, 2867 w, 1689 s$, $1634 s, 1450 w, 1384 m, 1343 m, 1297 s, 1200 s, 1146 s, 1069 m, 1036 m, 974 w, 947 w, 865 w, 765 w, 623 w, 530 w .{ }^{1} \mathrm{H}-$ NMR ($\left.250 \mathrm{MHz},\left(\mathrm{D}_{6}\right) \mathrm{DMSO}\right): 10.48(\mathrm{~s}, \mathrm{NH}) ; 5.56(d, J=3.6, \mathrm{OH}-\mathrm{C}(2)) ; 5.08(d, J=6.7, \mathrm{OH}-\mathrm{C}(3)) ; 5.01(d d$, $J=3.6,5.0, \mathrm{H}-\mathrm{C}(2)) ; 4.96(t, J=5.5, \mathrm{OH}-\mathrm{C}(5)) ; 4.22(d d d, J=2.5,5.5,7.0, \mathrm{H}-\mathrm{C}(4)) ; 3.95(d t, J=5.5,7.0$, $\mathrm{H}-\mathrm{C}(3)) ; 3.73(d d d, J=2.5,5.5,13.0, \mathrm{H}-\mathrm{C}(5)) ; 3.50\left(t d, J=5.5,13.0, \mathrm{H}^{-}-\mathrm{C}(5)\right) ; 2.38-2.58(m, 4 \mathrm{H})$. Anal. calc. for $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{NO}_{6}$ (243.22): C 49.38, H 5.39, N 5.76; found: C 49.26, H 5.56, N 5.73.

Treatment of 1 with $\mathrm{CH}_{2} N_{2}$. A soln. of $1(409 \mathrm{mg}, 1.49 \mathrm{mmol})$ in dry THF (10 ml) was cooled to -10°, treated dropwise with $2.5 \% \mathrm{CH}_{2} \mathrm{~N}_{2} / \mathrm{Et}_{2} \mathrm{O}$ (prepared from N -nitroso- N -methyl-4-toluenesulfonamide [43]; 2.5 ml), stirred for 3 h at -10°, treated with a second portion of the $\mathrm{CH}_{2} \mathrm{~N}_{2}$ soln. (0.5 ml), and stirred for further 2 h . Evaporation at $<30^{\circ}$ gave a $35: 65$ mixture (${ }^{1} \mathrm{H}-\mathrm{NMR}$) 21/22 (498 mg). Prep. HPLC (hexane/AcOEt 2:1) at 5° gave $21(152 \mathrm{mg}, 32 \%)$ and crystalline $22(262 \mathrm{mg}, 55 \%)$ which was recrystallized in $\mathrm{Et}_{2} \mathrm{O} /$ hexane.
(IR)-2',5'-Dihydro-2,3:5,6-di-O-isopropylidenespiro[[1,4]anhydro-D-mannitol-1, $2^{\prime}-[1,3,4]$ thiadiazole $]$ (21). Colorless oil. R_{f} (hexane/AcOEt 2:1) 0.20 (partial decomposition). $[\alpha]_{\mathrm{D}}^{25}==+80.0\left(c=1.1, \mathrm{CHCl}_{3}\right.$). UV $\left(\mathrm{CHCl}_{3}\right): 305$ (sh, ca. 345) 245 (ca. 880). IR (CHCl_{3}): $2990 \mathrm{~m}, 2940 \mathrm{w}, 1375 \mathrm{~m}, 1160 \mathrm{~m}, 1150 \mathrm{~m}, 1120 \mathrm{~m}, 1070 \mathrm{~s}$, $1040 \mathrm{~m}, 1000 \mathrm{w}, 970 \mathrm{~m}, 960 \mathrm{w}, 910 \mathrm{~m}, 890 \mathrm{~m}, 860 \mathrm{~m}, 840 \mathrm{~m} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 5.90(d, J=17.7$, $\mathrm{H}-\mathrm{C}\left(5^{\prime}\right)$); $5.67\left(d, J=17.7, \mathrm{H}^{\prime}-\mathrm{C}\left(5^{\prime}\right)\right) ; 5.18(d d, J=3.5,5.8, \mathrm{H}-\mathrm{C}(3)) ; 4.97(d, J=5.8, \mathrm{H}-\mathrm{C}(2)) ; 4.44(d d d, J=$ 3.7, 5.6, 8.3, H-C(5)); $4.40(d d, J=3.4,8.3, \mathrm{H}-\mathrm{C}(4)) ; 4.08(d d, J=5.7,8.9, \mathrm{H}-\mathrm{C}(6)) ; 3.98(d d, J=3.7,8.9$, $\mathrm{H}-\mathrm{C}(6)) ; 1.56(s, \mathrm{Me}) ; 1.45(s, \mathrm{Me}) ; 1.43(s, \mathrm{Me}) ; 1.38(s, \mathrm{Me}) .{ }^{13} \mathrm{C}-\mathrm{NMR}$: Table 5.
(1S)-4',5'-Dihydro-2,3:5,6-di-O-isopropylidenespiro[[1,4]anhydro-D-mannitol-1,5'-[1,2,3]thiadiazole] (22). M.p. 114.5-115 (foaming after melting). R_{f} (hexane/AcOEt 2:1) 0.18. R_{f} (HPTLC precoated plates NH_{2} (Merck), hexane/AcOEt 1:1) 0.39. $[\alpha]_{\mathrm{D}}^{25}=-14.0,[\alpha]_{436}^{25}=+17.4,[\alpha]_{365}^{25}=+262.1\left(c=0.84, \mathrm{CHCl}_{3}\right) . \mathrm{UV}\left(\mathrm{CHCl}_{3}\right)$: 311 (315), 270 (1560). IR (CHCl_{3}): $3000 \mathrm{~m}, 2945 \mathrm{~m}, 2890 \mathrm{~m}, 1505 \mathrm{~m}, 1455 \mathrm{~m}, 1395 w, 1385 \mathrm{~m}, 1375 \mathrm{~m}, 1290 \mathrm{~m}$, $1160 \mathrm{~m}, 1150 \mathrm{~m}, 1125 \mathrm{~m}, 1110 \mathrm{~m}, 1070 \mathrm{~s}, 1025 \mathrm{~m}, 995 \mathrm{w}, 975 \mathrm{~m}, 900 \mathrm{~m}, 890 \mathrm{~m}, 875 \mathrm{~m}, 865 \mathrm{~m}, 840 \mathrm{~s} .{ }^{1} \mathrm{H}-\mathrm{NMR}$ (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): 5.54\left(d, J=17.7\right.$; irrad. at 4.28 : NOE of $\left.4.4 \% ; \mathrm{H}-\mathrm{C}\left(4^{\prime}\right)\right) ; 4.87(d d, J=3.4,5.8, \mathrm{H}-\mathrm{C}(3)) ; 4.84(d$, $J=5.8$; irrad. at 4.28: NOE of 1.2% (incl. integration of $\mathrm{H}-\mathrm{C}(3)$); $\mathrm{H}-\mathrm{C}(2)$); $4.40(d d d, J=3.9,6.1,8.0, \mathrm{H}-\mathrm{C}(5)$); $4.28\left(d, J=17.7\right.$; irrad. at 5.54: NOE of $\left.4.3 \% ; \mathrm{H}^{\prime}-\mathrm{C}\left(4^{\prime}\right)\right) ; 4.06(d d, J=6.1,9.0, \mathrm{H}-\mathrm{C}(6)) ; 3.96(d d, J=3.9,9.0$, $\left.\mathrm{H}^{\prime}-\mathrm{C}(6)\right) ; 3.70(d d, J=3.4,8.0$; irrad. at 5.54 : NOE of $1.2 \% ; \mathrm{H}-\mathrm{C}(4)) ; 1.50(\mathrm{~s}, \mathrm{Me}) ; 1.44(\mathrm{~s}, \mathrm{Me}) ; 1.36(\mathrm{~s}, \mathrm{Me})$; $1.34(s, \mathrm{Me}) .{ }^{13} \mathrm{C}$-NMR: Table 5. CI-MS $\left(\mathrm{NH}_{3}\right): 334\left(69,\left[M+\mathrm{NH}_{4}{ }^{+}\right), 317\left(42,[M+1]^{+}\right), 306\left(100,\left[M-\mathrm{N}_{2}+\right.\right.\right.$ $\left.\mathrm{NH}_{4}\right]^{+}$), 289 (10, $\left[M-\mathrm{N}_{2}+1\right]^{+}$), 274 (8), 248 (24), 231 (27). Anal. calc. for $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}$ (316.38): C 49.35, H 6.37, N 8.85, S 10.13; found: C 49.41, H 6.51, N 8.82, S 10.00.
(1S)-1,2:4,5-Di-O-isopropylidene-1-C-(1,3,4-thiadiazol-2-yl)-D-arabinitol (23). A soln. of 21 (100 mg , ca. $0.3 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(250 \mu 1,4.77 \mathrm{mmol})$ in $\mathrm{CHCl}_{3}(25 \mathrm{ml})$ was stirred at r.t. for 2 d . Evaporation gave crystalline $23\left(103 \mathrm{mg},>95 \%\right.$ pure by ${ }^{1} \mathrm{H}-\mathrm{NMR}$) which was recrystallized in $\mathrm{Et}_{2} \mathrm{O} /$ hexane. M.p. $139^{\circ} . R_{\mathrm{f}}$ (hexane/AcOEt 2:1) 0.05. R_{f} (HPTLC precoated plates NH_{2} (Merck), hexane/AcOEt 1:1) 0.17. $[\alpha]_{\mathrm{D}}^{25}=+15.9\left(c=1.1, \mathrm{CHCl}_{3}\right)$. UV $\left(\mathrm{CHCl}_{3}\right): 239(635)$. IR $\left(\mathrm{CHCl}_{3}\right): 3560 \mathrm{w}, 2990 \mathrm{~s}, 2960 \mathrm{~m}, 2890 \mathrm{~m}, 1450 \mathrm{~m}, 1400 \mathrm{~m}, 1375 \mathrm{~s}, 1150 \mathrm{~m}, 1110 \mathrm{~m}, 1070 \mathrm{~s}$, $1010 \mathrm{~s}, 1075 \mathrm{~s}, 985 \mathrm{~m}, 970 \mathrm{~m}, 910 \mathrm{~m}, 890 \mathrm{~m}, 880 \mathrm{~m}, 845 \mathrm{~m} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 9.10\left(\mathrm{~s}, \mathrm{H}-\mathrm{C}\left(5^{\prime}\right)\right) ; 5.75(d$, $J=7.8, \mathrm{H}-\mathrm{C}(1)) ; 4.85(d d, J=0.9,7.8, \mathrm{H}-\mathrm{C}(2)) ; 4.03(d d, J=6.1,8.0, \mathrm{H}-\mathrm{C}(5)) ; 3.98(t d, J \approx 5.4,8.3, \mathrm{H}-\mathrm{C}(4))$; $3.87\left(d d, J=4.7,8.0, \mathrm{H}^{\prime}-\mathrm{C}(5)\right) ; 3.58$ (br. $t, J \approx 8.7$; after addn. of $\mathrm{D}_{2} \mathrm{O}:$ br. $d, J=7.9, \mathrm{H}-\mathrm{C}(3)$); $1.90(d, J=9.7$, exchanged with $\left.\mathrm{D}_{2} \mathrm{O}, \mathrm{OH}-\mathrm{C}(3)\right) ; 1.67(s, \mathrm{Me}) ; 1.52(s, \mathrm{Me}) ; 1.40(s, \mathrm{Me}) ; 1.34(s, \mathrm{Me}) .{ }^{13} \mathrm{C}-\mathrm{NMR}:$ Table $5 . \mathrm{Cl}-$ MS (NH_{3}): 318 (16), 317 ($100,[M+1]^{+}$).
(1S)-1,2:4,5-Di-O-isopropylidene-I-C-(1,2,3-thiadiazol-5-yl)-D-arabinitol (24). A soln. of 22 (100 mg , 0.32 mmol) in pyridine (5 ml) was stirred for 2 h at 80°. Evaporation and crystallization of the residue from petroleum ether (b.p. $50-70^{\circ}, 3 \mathrm{ml}$) gave pure $24(93 \mathrm{mg}, 93 \%)$. M.p. $115^{\circ} . R_{\mathrm{f}}$ (hexane/AcOEt 2:1) 0.18. $[\alpha]_{\mathrm{D}}^{25}=$ $-3.5,[\alpha]_{436}^{25}=0,[\alpha]_{365}^{25}=+17.8\left(c=0.96, \mathrm{CHCl}_{3}\right) . \mathrm{UV}\left(\mathrm{CHCl}_{3}\right): 251(3160)$. IR $\left(\mathrm{CHCl}_{3}\right): 3560 \mathrm{w}, 2990 \mathrm{~m}, 2940 \mathrm{w}$, $2910 \mathrm{w}, 2890 \mathrm{w}, 1455 \mathrm{w}, 1385 \mathrm{~s}, 1375 \mathrm{~s}, 1155 \mathrm{~s}, 1110 \mathrm{~m}, 1075 \mathrm{~s}, 1060 \mathrm{~s}, 1040 \mathrm{~m}, 1000 \mathrm{w}, 970 \mathrm{w}, 900 \mathrm{~m}, 890 \mathrm{~m}, 860 \mathrm{~m}$, $850 \mathrm{~m} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 8.65\left(d, J=0.5, \mathrm{H}-\mathrm{C}\left(4^{\prime}\right)\right.$); 5.76 (br. $d, J=7.5, \mathrm{H}-\mathrm{C}(1)$); $4.65(d d, J=1.9$,
$7.5, \mathrm{H}-\mathrm{C}(2)) ; 4.03(d d, J=6.2,8.5, \mathrm{H}-\mathrm{C}(5)) ; 3.95(t d, J \approx 5.8,8.1, \mathrm{H}-\mathrm{C}(4)) ; 3.83\left(d d, J=5.4,8.0, \mathrm{H}^{\prime}-\mathrm{C}(5)\right) ; 3.13$ (br. $d t, J \approx 1.2,8.0$; after addn. of $\left.\mathrm{D}_{2} \mathrm{O}: d d, J=1.8,8.1, \mathrm{H}-\mathrm{C}(3)\right) ; 1.98\left(d, J=8.5\right.$, exchanged with $\mathrm{D}_{2} \mathrm{O}, \mathrm{OH}-$ $\mathrm{C}(3)) ; 1.64(\mathrm{~s}, \mathrm{Me}) ; 1.50(\mathrm{~s}, \mathrm{Me}) ; 1.33(\mathrm{~s}, 2 \mathrm{Me}) .{ }^{13} \mathrm{C}-\mathrm{NMR}$: Table 5. CI-MS $\left(\mathrm{NH}_{3}\right): 318(17), 317\left(100,[\mathrm{M}+1]^{+}\right)$. Anal. calc. for $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}$ (316.38): C 49.35, H 6.37, N 8.85, S 10.13; found: C 49.22, H 6.30, N 8.59, S 9.88.

Thermolysis of 21. In an NMR tube, a soln. of $21 / 22$ ca. $9: 1(15 \mathrm{mg})$ in $\mathrm{CDCl}_{3}(0.6 \mathrm{ml})$ was kept at 20° and monitored by ${ }^{\prime} \mathrm{H}$-NMR (integration of the signals at $5.90,5.67$, and 5.54 ppm). Half-life of $21: 21.6 \mathrm{~h}$. The complex reaction mixture contained ca. $20-25 \%$ of 27 which was not analyzed any further.

Methyl 2,3:5,6-Di-O-isopropylidene-1-C-(methylthio)- α-D-mannofuranoside (26). A soln. of 21 (100 mg , ca. 0.3 mmol) in $\mathrm{MeOH}(25 \mathrm{ml})$ was stirred for 2 d at r.t. Evaporation gave crude $26(c a .100 \mathrm{mg},>95 \%$ pure by ${ }^{1} \mathrm{H}-\mathrm{NMR}$), which was purified by prep. HPLC (hexane/AcOEt 4:1). R_{f} (hexane/AcOEt 2:1) 0.39. IR (CHCl $)$: $3000 \mathrm{~m}, 2940 \mathrm{~m}, 2910 \mathrm{w}, 2840 \mathrm{w}, 1385 \mathrm{~m}, 1375 \mathrm{~m}, 1265 \mathrm{~m}, 1165 \mathrm{~m}, 1150 \mathrm{~m}, 1115 \mathrm{~s}$ (sh), 1100s, 1075s, $1035 \mathrm{~s}, 1010 \mathrm{~m}$ (sh), $985 m, 965 m, 955 m, 890 w, 870 m, 845 m .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 4.82(d d, J=3.8,5.8, \mathrm{H}-\mathrm{C}(3)) ; 4.56$ ($d, J=5.9$; irrad. at 3.31: NOE (1.5\%); irrad. at 2.08: NOE (1.9\%); H-C(2)); $4.40(d d d, J=4.3,6.2,7.9, \mathrm{H}-\mathrm{C}(5)$); $4.11(d d, J=6.2,8.8, \mathrm{H}-\mathrm{C}(6)) ; 4.01\left(d d, J=4.3,8.8, \mathrm{H}^{\prime}-\mathrm{C}(6)\right) ; 3.80(d d, J=3.8,7.9$; irrad. at $3.31: \mathrm{NOE}(1.7 \%)$; $\mathrm{H}-\mathrm{C}(4)) ; 3.31$ (s; irrad. at 2.08: NOE (2%), MeO); 2.08 (s; irrad. at 3.31: NOE (3%); MeS); 1.53 (s, Me); $1.45(s$, $\mathrm{Me}) ; 1.37(s, \mathrm{Me}) ; 1.36(s, \mathrm{Me}) . \mathrm{CI}-\mathrm{MS}\left(\mathrm{NH}_{3}\right): 305\left(2,\left[M-\mathrm{Me}^{+}\right), 290(17), 289\left(100,[M-\mathrm{MeO}]^{+}\right), 273(22\right.$, $\left.[M-\mathrm{MeS}]^{+}\right), 263\left(3,[M-\text { acetone }+\mathrm{H}]^{+}\right)$.

Thermolysis of 22. A soln. of $22(20 \mathrm{mg})$ in high-boiling petroleum ether (40 ml) was kept at 100° for 8 h and evaporated. ${ }^{\text {'H-NMR: }} 22$ (30%), 27 (35%), and 28 [37] (35\%). Half-life of 21: ca. 6 h. Prep. HPLC (hexane/ AcOEt 2:1) gave pure samples of 27 and 28.

Data of 1,2-Anhydro-3,4:6,7-di-O-isopropylidene-1-thio- β-D-manno-hept-2-ulofuranose ($=(1 \mathrm{~S})$-2,3:5,6-Di-O-isopropylidenespirol[1,4$]$ anhydro-D-mannitol-1, $2^{\prime}\left(3^{\prime} \mathrm{H}\right)$-thiirine ; 27). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 4.96$ $(d d, J=3.7,5.9, \mathrm{H}-\mathrm{C}(4)) ; 4.57(d, J=5.9, \mathrm{H}-\mathrm{C}(3)) ; 4.50(d d d, J=3.9,6.0,8.2, \mathrm{H}-\mathrm{C}(6)) ; 4.10(d d, J=6.1,8.9$, $\mathrm{H}-\mathrm{C}(7)) ; 4.02\left(d d, J=3.9,8.9, \mathrm{H}^{\prime}-\mathrm{C}(7)\right) ; 3.79(d d, J=3.7,8.2, \mathrm{H}-\mathrm{C}(5)) ; 2.63(d, J=1.5, \mathrm{H}-\mathrm{C}(1)) ; 2.50(d, J=$ 1.5, H-C(1)); 1.58 (s, Me); 1.45 (s, Me); 1.39 (s, Me); 1.38 (s, Me). ${ }^{13} \mathrm{C}-\mathrm{NMR}$: Table 5. EI-MS: 273 (13, [MMe^{+}), 113 (8), 101 (38), $97(11), 85(14), 83(10), 81(11), 73(10), 69(12), 59(24), 55(10), 43(100), 41(22), 39$ (12).

Ethyl (Z)- and (E)-3,6-Anhydro-2-deoxy-4,5:7,8-di-O-isopropylidene-D-manno-oct-2-enonate (29 and $\mathbf{3 0}$, resp.). A mixture of $1(274 \mathrm{mg}, 1 \mathrm{mmol})$ and $\mathrm{Rh}_{2}(\mathrm{OAc})_{4} 2 \mathrm{H}_{2} \mathrm{O}(22 \mathrm{mg}, 0.1 \mathrm{mmol})$ in toluene (10 ml) was heated to 110° and treated dropwise within 1 h with a soln. of ethyl diazoacetate ($1.71 \mathrm{~g}, 15 \mathrm{mmol}$) in toluene (10 ml). Evaporation and FC (75 g , hexane $/ t$-BuOMe $2: 1 \rightarrow 1: 1$) of the residue gave $29(108 \mathrm{mg}, 33 \%)$ and $\mathbf{3 0}(85 \mathrm{mg}$, 26%).

Data of 29: R_{f} (hexane $/ t$-BuOMe 2:1) 0.25. IR (film): 2988w, 2909w, 1712s, $1665 m, 1457 w, 1375 m, 1257 m$, $1194 s, 1157 m, 1119 m, 1069 s, 954 w, 873 w, 847 w, 812 w .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 5.14(d d, J=1.0,6.0$, $\mathrm{H}-\mathrm{C}(4)) ; 5.11(d, J=1.0, \mathrm{H}-\mathrm{C}(2)) ; 4.78(d d, J=3.5,6.0, \mathrm{H}-\mathrm{C}(5)) ; 4.47-4.54(m, \mathrm{H}-\mathrm{C}(7)) ; 4.38(d d, J=3.5,8.0$, H-C(6)); 4.08-4.24 ($m, 4 \mathrm{H}$); $1.48(s, \mathrm{Me}) ; 1.46(s, \mathrm{Me}) ; 1.41(s, 2 \mathrm{Me}) ; 1.27(t, J=7.1$, Me). EI-MS: 313 (35, $\left.[M-\mathrm{Me}]^{+}\right), 283(9), 255(10), 213$ (48), 185 (4), 167 (11), 101 (100), 85 (16), 69 (16), 59 (17), 43 (97).

Data of 30: R_{f} (hexane $/ t$-BuOMe 1:1) 0.23 . IR (film): $2986 w, 2909 w, 1713 s, 1660 s, 1455 w, 1372 s, 1338 w$, $1304 w, 1258 m, 1212 m, 1158 m, 1117 s, 1069 s, 977 w, 938 w, 844 w .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 5.76(d d, J=1.0$, 6.1, H-C(4)); $5.43(d, J=1.0, \mathrm{H}-\mathrm{C}(2)) ; 4.86(d d, J=4.0,6.0, \mathrm{H}-\mathrm{C}(5)) ; 4.44-4.51(\mathrm{~m}, \mathrm{H}-\mathrm{C}(7)) ; 4.04-4.24(\mathrm{~m}, 5$ H); $1.46(s, \mathrm{Me}) ; 1.45(s, \mathrm{Me}) ; 1.43(s, \mathrm{Me}) ; 1.40(s, \mathrm{Me}) ; 1.27(t, J=7.1, \mathrm{Me})$. El-MS: 313 (21 , $\left.[\mathrm{M}-\mathrm{Me}]^{+}\right), 283$ (6), 255 (6), 213 (26), 167 (8), 153 (5), 139 (4), 125 (4), 111 (5), 101 (72), 85 (13), 69 (19), 43 (100).

Ethyl 2,3-Anhydro-2-(ethoxycarbonyl)-4,5:7,8-di-O-isopropylidene-2-thio- β-d-manno-oct-3ulofuranosonate ($=$ Diethyl(1S)-2,3:5,6-Di-O-isopropylidenespirol[1,4]anhydro-D-mannitol-1,2'(3'H)-thiirine]-3',3'-dicarboxylate; 31) and Ethyl 3,6-Anhydro-2-deoxy-2-(ethoxycarbonyl)-4,5:7,8-di-O-isopropylidene-D-manno-oct-2-enonate [35] (32). A mixture of 1 ($274 \mathrm{mg}, 1 \mathrm{mmol}$), ethyl diazomalonate ($559 \mathrm{mg}, 3 \mathrm{mmol}$), and $\mathrm{Rh}_{2}(\mathrm{OAc})_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}(6 \mathrm{mg}, 0.03 \mathrm{mmol})$ in toluene (10 ml) was heated to 80°. Once the evolution of gas had ceased (5 min), the mixture was cooled to r.t. and evaporated. FC (25 g , hexane/AcOEt 7:1 $\rightarrow 5: 1$) gave $32(116 \mathrm{mg}$, 29%) and 31 ($292 \mathrm{mg}, 68 \%$).

In a parallel reaction, the mixture was cooled to r.t., treated with $\mathrm{P}\left(\mathrm{NEt}_{2}\right)_{3}(181 \mu \mathrm{l}, 1 \mathrm{mmol})$, and stirred for 1.5 h at 80°. Filtration (toluene) of the cold mixture through silica gel, evaporation of the filtrate, and FC (50 g , hexane/AcOEt 2:1) of the residue gave 32 ($371 \mathrm{mg}, 93 \%$).

Data of 31: R_{f} (hexane/AcOEt 5:1) 0.23. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): 5.37(d, J=5.8, \mathrm{H}-\mathrm{C}(4)$); $4.95(d d, J=3.4,5.8$, $\mathrm{H}-\mathrm{C}(5)) ; 4.45(d d d, J=3.8,6.1,8.4, \mathrm{H}-\mathrm{C}(7)) ; 4.29\left(q, J=7.1, \mathrm{CH}_{2}\right) ; 4.26\left(q, J=7.1, \mathrm{CH}_{2}\right) ; 4.06(d d, J=6.1,8.9$, $\mathrm{H}-\mathrm{C}(8)) ; 3.90(d d, J=3.4,8.4, \mathrm{H}-\mathrm{C}(6)) ; 3.86\left(d d, J=3.8,8.9, \mathrm{H}^{\prime}-\mathrm{C}(8)\right) ; 1.55(s, \mathrm{Me}) ; 1.43(s, \mathrm{Me}) ; 1.42(s, \mathrm{Me}) ;$ $1.36(s, \mathrm{Me}) ; 1.33(1, J=7.1, \mathrm{Me}) ; 1.29(t, J=7.1, \mathrm{Me})$. EI-MS: 417 (4, $\left.[M-\mathrm{Me}]^{+}\right), 385$ (34), 355 (17), 339 (4), 285 (13), 253 (12), 239 (37), 196 (15), 187 (12), 101 (90), 97 (12), 85 (17), 69 (26), 59 (29), 55 (14), 43 (100), 29 (77).

Data of 32. R_{f} (hexane/AcOEt 2:1) 0.27. M.p. 91-92 ${ }^{\circ}$ ([35]: 92-93). IR (KBr): 2984m, 2894w, $1714 s$, $1656 s, 1452 w, 1380 \mathrm{~m}, 1261 \mathrm{~s}, 1208 \mathrm{~s}, 1159 \mathrm{~m}, 1111 \mathrm{~s}, 1081 \mathrm{~s}, 1046 s, 1004 w, 974 w, 936 w, 907 w, 882 m, 821 w$, $781 w$. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): 5.75(d, J=5.7, \mathrm{H}-\mathrm{C}(4)) ; 4.84(d d, J=3.7,5.7, \mathrm{H}-\mathrm{C}(5)) ; 4.50(d d d, J=4.5,6.0,7.5$, $\mathrm{H}-\mathrm{C}(7)) ; 4.33(d d, J=3.7,7.5, \mathrm{H}-\mathrm{C}(6)) ; 4.26(q, J=7.1,1 \mathrm{H}) ; 4.25,(q, J=7.1,2 \mathrm{H}) ; 4.24(q, J=7.1,1 \mathrm{H}) ; 4.07-$ $4.19(m, 2 \mathrm{H}-\mathrm{C}(8)) ; 1.45(s, \mathrm{Me}) ; 1.44(s, \mathrm{Me}) ; 1.42(\mathrm{~s}, \mathrm{Me}) ; 1.39(\mathrm{~s}, \mathrm{Me}) ;(\mathrm{s}, \mathrm{Me}) ; 1.295(t, J=7.1, \mathrm{Me}) ; 1.285(t$, $J=7.1, \mathrm{Me}$). EI-MS: 385 (30, $[M-\mathrm{Me}]^{+}$), 355 (11), 339 (4), 285 (12), 253 (12), 239 (36), 196 (17), 187 (10), 101 (94), 87 (12), 69 (19), 59 (19), 43 (100), 29 (50).

Ethyl 3,6-Anhydro-2-deoxy-2-(ethoxycarbonyl)-4,5-O-isopropylidene-7-O-trityl-D-ribo-hept-2-enonate (33). A mixture of $2(223 \mathrm{mg}, 0.5 \mathrm{mmol})$ and $\mathrm{Rh}_{2}(\mathrm{OAc})_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}(11 \mathrm{mg}, 0.05 \mathrm{mmol})$ in toluene (5 ml) was treated dropwise (within 30 min) at 110° with a soln. of diethyl diazomalonate ($376 \mathrm{mg}, 2 \mathrm{mmol}$) in toluene (5 ml). The mixture was cooled to r.t., treated with $\mathrm{P}\left(\mathrm{NEt}_{2}\right)_{3}(91 \mu \mathrm{l}, 0.5 \mathrm{mmol})$, stirred for 1.5 h at 80°, and cooled to 0°. Filtration (toluene) through a pad of silica gel, evaporation of the filtrate, and FC (25 g , hexane/AcOEt 5:1) gave 33 (198 mg, 69\%). $\boldsymbol{R}_{\mathrm{f}}$ (hexane/AcOEt 5:1) 0.27. M.p. 146°. IR (KBr): 2935w, 2872w, 1722s, 1630w, 1491w, $1447 w, 1371 w, 1290 m, 1252 w, 1226 m, 1194 s, 1153 m, 1094 s, 1044 w, 1003 m, 956 w, 895 w, 835 w, 797 w, 747 m$, $707 m, 629 w .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): 7.22-7.43(m, 15$ arom. H$) ; 5.99(d, J=5.9, \mathrm{H}-\mathrm{C}(4)) ; 4.81(t, J=2.8, \mathrm{H}-\mathrm{C}(6))$; $4.48(d, J=5.9, \mathrm{H}-\mathrm{C}(5)) ; 4.22-4.43\left(m, 2 \mathrm{CH}_{2}\right) ; 3.64(d d, J=2.8,10.8, \mathrm{H}-\mathrm{C}(7)) ; 2.96(d d, J=2.8,10.8$, $\mathrm{H}^{\prime}-\mathrm{C}(7)$); $1.43(\mathrm{~s}, \mathrm{Me})$; 1.27-1.36 (m, 3 Me). Anal. calc. for $\mathrm{C}_{34} \mathrm{H}_{36} \mathrm{O}_{\mathrm{B}}(572.54)$: C 71.31, H 6.34; found: C 71.16, H6.50.

X-Ray Analyses of 4, 13, and 24. Crystals were obtained from THF/hexane (4), AcOEt (13), or petroleum ether (24). 4: $\mathrm{C}_{18} \mathrm{H}_{28} \mathrm{O}_{5} \mathrm{~S}$ (365.5); orthorhombic $P 2,2,2 ; \quad a=6.022$ (3), $b=8.620$ (3), $c=35.42$ (2) $\AA ; V=1838.7$ (14) $\AA^{3} ; D_{\mathrm{x}}=1.288 \mathrm{Mg} / \mathrm{m}^{3} ; Z=4$. 13: $\mathrm{C}_{62} \mathrm{H}_{22} \mathrm{O}_{5}$ (246.3); monoclinic $C 2 ; a=8.767$ (3), $b=7.607$ (3), $c=19.812$ (8) $\AA, \beta=99.12$ (3) ${ }^{\circ} ; V=1304.6$ (9) $\AA^{3} ; D_{\mathrm{x}}=1.254 \mathrm{Mg} / \mathrm{m}^{3} ; Z=4.24: \mathrm{C}_{13} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{s} \mathrm{~S}$ (316.4); orthorhombic $P 2,2,2 ; a=5.501$ (3), $b=14.351$ (6), $c=19.709(13) \AA ; V=1556.0(15) \AA^{3} ; D_{\mathrm{x}}=1.350 \mathrm{Mg} / \mathrm{m}^{3} ; Z=4$. Intensities were measured in the ω-scan mode on a Nicolet-R3m diffractometer (graphite-monochromator, $\operatorname{Mo} K_{a}, \lambda=$ $0.71069 \AA)$ at $183(4,24)$ or $163 \mathrm{~K}(24), 2 \Theta_{(\max)}=56^{\circ}$, variable scan speed of 1.0 to $15.0^{\circ} / \mathrm{min}$ in $\omega(4,24)$ or of 1.70 to $19.53 \% \mathrm{~min}$ in $\omega(\mathbf{1 3})$. Of the 2607 (4), $1775(13)$, or $2210(24)$ total collected reflections and 2574 (4), $1690(13)$, or 2184 (24) independent reflections, $1375(4)$, $1320(13)$, or $1095(24)$ were observed ($F>5.0 \sigma(\mathrm{~F})$). $R=0.07, R_{w}=0.083(4) ; R=0.0709, R_{w}=0.0896(13) ; R=0.0595, R_{w}=0.0641$ (24). The structures were solved with the direct-methods routine of SHELXS-86 [44], and the refinement was performed with Nicolet SHELXTL PLUS [45]. Local disorder was observed in the cyclohexane moiety of 13.

REFERENCES

[1] M. Hürzeler, B. Bernet, A. Vasella, Helv. Chim. Acta 1993, 76, 995.
[2] P. Metzner, Synthesis 1980, 1185.
[3] a) D. L. Boger, S. M. Weinreb, 'Hetero Diels-Alder, Methodology in Organic Synthesis', Academic Press, New York, 1987, pp. 120-145; b) ibid., pp. 214-238.
[4] E. Schaumann, in 'The Chemistry of Double-Bonded Functional Groups, Supplement A', Ed. S. Patai, John Wiley, Chichester, 1989, Part 2, pp. 1269-1371.
[5] S. Scheithauer, R. Mayer, 'Thio- and Dithiocarboxylic Acids and Their Derivatives' in 'Topics in Sulfur Chemistry', Ed. A. Senning, Thieme-Verlag, Stuttgart, 1979, Vol. 4, pp. 295-306.
[6] S. M. Weinreb, R. R. Staib, Tetrahedron 1986, 38, 3087.
[7] E. Vedejs, T. H. Eberlein, D. J. Mazur, C. K. McClure, D. A. Perry, R. Ruggeri, E. Schwartz, J. S. Stults, D. L. Varie, R. G. Wilde, S. Wittenberger, J. Org. Chem. 1986,51, 1556; E. Vedejs, D. A. Perry, K. N. Houk, N. G. Rondan, J. Am. Chem. Soc. 1983, 105, 6999; E. Vedejs, D. A. Perry, ibid. 1983, 105, 1683; E. Vedejs, T. H. Eberlein, D. L. Vanle, ibid. 1982, 104, 1445.
[8] K.Hartke, T. Kissel, J. Quante, G. Henssen, Angew.Chem. 1978,90, 1016; K.Hartke, G. Henssen, T. Kissel, Liebigs Ann. Chem. 1980, 1665.
[9] P. Beslin, P. Metzner, Tetrahedron Lett. 1980, 21, 4657.
[10] H. Meier, in 'Houben-Weyl's Methoden der organischen Chemie', Ed. K. H. Büchel, Thieme, Stuttgart, 1985, Band E11, Teil 2, pp.1498-1508.
[11] R. Mayer, S. Scheithauer, in 'Houben-Weyl's Methoden der organischen Chemie', Ed. K. H. Büchel, Thieme, Stuttgart, 1985, Band E5, Teil 1, pp. 785-811.
[12] M. Regitz, H. Heydt, in '1,3-Dipolar Cycloaddition Chemistry', Ed. A. Padwa, John Wiley, New York, 1984, Vol. 1, pp. 470-477.
[13] A. Schönberg, E. Frese, W. Knöfel, K. Praefcke, Chem. Ber. 1970, 103, 938; A. Schönberg, B. König, E. Singer, ibid. 1967, 100, 767.
[14] R.Huisgen, W.Mack, E. Anneser, Angew.Chem. 1961, 73, 656; K. Bunge, R. Huisgen, R. Raab, H. J. Sturm, Chem. Ber. 1972, 105, 1307.
[15] K. Hartke, T. Gillmann, Chem.-ZI. 1986, 110, 338.
$[16]$ a) A. P. Krapcho, M. P. Silvon, I. Goldberg, E. G. E. Jahngen, Jr., J. Org. Chem. 1974, 39, 860; b) A. P. Krapcho, D. R. Rao, M. P. Silvon, B. Abegaz, ibid. 1971, 36, 3885; c) T. Katada, S. Eguchi, T. Sasaki, J. Chem. Soc., Perkin Trans. 1 1984, 2641; d) R. Huisgen, G. Mlostoń Tetrahedron Lett. 1985, $26,1049$.
[17] G. Mloston, H. Heimgartner, Helv. Chim. Acta 1992, 75, 1825.
[18] R. Huisgen, C. Fulka, I. Kalwinsch, L. Xingya, G. Mloston̆ J. R. Moran, A. Pröbstl, Bull. Soc. Chim. Belg. 1984, 93, 511.
[19] K. Hartke, A. Kumar, J. Köster, G. Henssen, T. Kissel, T. Kämpchen, Chem. Ber. 1982, 115, 3096.
[20] V. A. Montero, I. T. Hernandez, J. de Pascual Teresa, J. R. Moran, R. Olabarrieta, J. Org. Chem. 1989, 54, 3664.
[21] J. M. Beiner, D. Lecadet, D. Paquer, A. Thuiller, J. Vialle, Bull. Soc. Chim. Fr. 1973, 1979; J. M. Beiner, D. Lecadet, D. Paquer, A. Thuiller, ibid., 1973,1983.
[22] U. Schmidt, E. Heymann, K. Kabitzke, Chem. Ber. 1963, 96, 1478.
[23] A. Ohno, T. Koizumi, Y. Akasaki, Bull.Chem. Soc. Jpn. 1974, 47, 319.
[24] S. Takano, S. Tomita, M. Takahashi, K. Ogasawara, Synthesis 1987, 1116.
$[25]$ D. M. Vyas, G. W. Hay, J. Chem. Soc., Perkin Trans. 1 1975, 180.
[26] P. Herczegh, M. Zsély, L. Szilágyi, R. Bognár, Heterocycles 1989, 28, 887, P. Herczegh, M. Zsély, R. Bognár, L. Szilágyi, Tetrahedron Lett. 1986, 27, 1509.
$[27]$ G. Seitz, R. Mohr, W. Overheu, R. Allmann, M. Nagel, Angew. Chem. 1984, 96, 885.
[28] R. E. Ireland, D. M. Obrecht, Helv. Chim. Acta 1986, 69, 1273.
[29] H. Günther, 'NMR-Spektroskopie', Georg Thieme Verlag, Stuttgart, 1983, pp.115-118; L. M. Jackman, S. Stemhell, 'Applications of Nuclear Magnetic Resonance Spectroscopy in Organic Chemistry', in 'Intemational Series in Organic Chemistry', Eds. D. H. R. Barton and W. Doering, Vol. 10, 1969, pp.316-328.
[30] M. C. Grossel, Tetrahedron Lett. 1980, 21, 1075.
[31] R. Mayer, W. Broy, R. Zahradnik, Adv. Heterocycl. Chem. 1967, 8, 219.
$[32]$ G. Casy, S. Lane, R. K. Taylor, J. Chem. Soc., Perkin Trans. 1 1986, 1397.
[33] W. Ried, U. Reiher, Chem. Ber. 1987, 120, 657.
[34] R. Sustmann, W. Sicking, H. Lamy-Schelkens, L. Ghosez, Tetrahedron Lett. 1991, 32, 1401; H. LamySchelkens, D. Giomi, L. Ghosez, ibid. 1989, 30,5887; M. Rivera, H. Lamy-Schelkens, F. Sainte, K. Mbiya, L. Ghosez, ibid. 1988, 29, 4573.
[35] B. Aebischer, R. Meuwly, A. Vasella, Helv. Chim. Acta 1984, 67, 2236.
[36] a) R. Huisgen, G. Mloston, C. Fulka, Heterocycles 1985, 23, 2207; b) L. Xingya, R. Huisgen, Tetrahedron Lett. 1985, 24, 4181.
[37] R. Csuk, B. I. Glänzer, Tetrahedron 1991, 47, 1655.
[38] H. P. Braun, H. Meier, Tetrahedron 1975, 31, 637.
[39] P. Dais, A. S. Perlin, Carbohydr. Res. 1986, 146, 177.
[40] M. Hürzeler, B. Bernet, A. Vasella, Helv. Chim. Acta 1992, 75, 557.
[41] M. P. Doyle, Acc. Chem. Res. 1986, 19, 348.
[42] A. Krebs, W. Rüger, B. Ziegenhagen, M. Hebold, I. Hardtke, R. Müller, M. Schütz, M. Wietzke, M. Wilke, Chem. Ber. 1984, 117, 277.
[43] L. F. Fieser, M. Fieser, 'Reagents for Organic Synthesis', John Wiley, New York, 1967, Vol. 1, p. 191.
[44] G. M. Sheldrick, 'SHELXS-86, A Program for the Solution of Crystal Structures from Diffraction Data', University of Göttingen, Germany.
[45] G. M. Sheldrick, 'SHELXTL Plus, an Integrated System for Solving, Refining and Displaying Crystal Structures from Diffraction Data, Version 3.0', University of Göttingen, Germany.

[^0]: ${ }^{1}$) Present address: Laboratorium für Organische Chemie, ETH-Zentrum, Universitätstrasse 16, CH-8092 Zürich

[^1]: ${ }^{2}$) For hetero-Diels-Alder reactions of α, β-unsaturated thioketones or of 1,2-dithioketones with alkenes, see [3b] [8].

[^2]: (E)-1,4-Anhydro-I-(2,6-dioxopiperidin-3-ylidene)-2,3-O-isopropylidene-5-O-trityl-D-ribitol $\quad(=(\mathrm{E})-3-(2,3-$ O-Isopropylidene-5-O-trityl-D-ribofuranosylidene)piperidine-2,6-dione; 19). A mixture of $2(1.34 \mathrm{~g}, 3 \mathrm{mmol})$ and 14 ($3.07 \mathrm{~g}, 9 \mathrm{mmol}$) was stirred under Ar for 3 h at 180°. The mixture solidified upon cooling to r.t. It was

